Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56557
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴喜美(Hsi-Mei Lai)
dc.contributor.authorJih-Hao Yuen
dc.contributor.author游日皓zh_TW
dc.date.accessioned2021-06-16T05:34:43Z-
dc.date.available2019-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation中華民國行政院食品藥物管理署。(2013)。食品添加物使用範圍及限量暨規格標準。https://consumer.fda.gov.tw/Law/FoodAdditivesList.aspx?nodeID=521.
Akpa, J. G.; Dagde, K. K. (2012). Modification of cassava starch for industrial uses. International Journal of Engineering and Technology, 2, 913–919.
Atichokudomchai, N.; Shobsngob, S.; Chinachoti, P.; Varavinit, S. (2001). A study of some physicochemical properties of high-crystalline tapioca starch. Starch/Starke, 53, 577–581.
Atichokudomchai, N.; Shobsngob, S.; Varavinit, S. (2000). Morphological properties of acid-modified tapioca starch. Starch/Starke, 52, 283–289.
BeMiller, J. N. (1997). Starch modification: Challenges and prospects. Starch/Starke, 49, 127–131.
Bertoft, E.; Piyachomkwan, K.; Chatakanonda, P.; Sriroth, K. (2008). Internal unit chain composition in amylopectins. Carbohydrate Polymers, 74, 527–543.
Betancur, A. D.; Chel, G. L. (1997). Acid hydrolysis and characterization of Canavalia ensiformis starch. Journal of Agriculture and Food Chemistry, 45, 4237–4241.
Blennow, A.; Engelsen, S. B.; Nielsen, T. H.; Baungaard, L.; Mikkelsen, R. (2002). Starch phosphorylation: a new front line in starch reaearch. Trends in Plant Science, 7, 445–450.
Blennow, A.; Hansen, M.; Schulz, A.; Jorgensen, K.; Donald, A. M.; Sanderson, J. (2003). The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy. Journal of Structural Biology, 143, 229–241.
Blennow, A.; Sjoland, A. K.; Andersson, R.; Kristiansson, P. (2005). The distribution of elements in the native starch granule as studies by particle-induces X-ray emission and complementary methods. Analytical Biochemistry, 347, 327–329.
Boutboul, A.; Giampaoli, P.; Feigenbaum, A.; Ducruet, V. (2002). Influence of the nature and treatment of starch on aroma retention. Carbohydrate Polymers, 47, 73–82.
Buleon, A.; Cotte, M.; Putaux, J.; d’Hulst, C.; Susini, J. (2014). Tracking sulfur and phosphorus within single starch granules using synchrotron X-ray microfluorescence mapping. Biochimica et Biophysica Acta, 1840, 113–119.
Bushra, M.; Xu, X.; Pan, S. (2013). Microwave assisted acetylation of mung bean starch and the catalytic activity of potassium carbonate in free-solvent reaction. Starch/Starke, 65, 236–243.
Cai, C.; Cai, J.; Man, J.; Yang, Y.; Wang, Z.; Wei, C. (2014). Allomorph distribution and granule structure of lotus rhizome C-type starch during gelatinization. Food Chemistry, 142, 408–415.
Cameron, R. E.; Donald, A. M. (1992). A small-angle X-ray scattering study of the annealing and gelatinization of starch. Polymer, 1992, 33, 2628–2635.
Cheetham, N. W. H.; Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate polymers, 36, 277–284.
Chen, L.; Li, X.; Li, L.; Guo, S. (2007). Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Current Applied Physics, 7S1, e90–e93.
Chen, Z.; Huang, J.; Suurs, P.; Schols, H. A.; Voragen, A. G. J. (2005). Granule size affects the acetyl substitution on amylopectin populations in potato and sweet potato starches. Carbohydrate Polymers, 62, 333–337.
Chen, Z.; Schols, H. A.; Voragen, A. G. J. (2003). Starch granule size strongly determines starch noodle processing and noodle quality. Journal of Food Science, 68, 1584–1589.
Chen, Z.; Schols, H. A.; Voragen, A. G. J. (2004). Differently sized granules from acetylated potato and sweet potato starches differ in the acetyl substitution pattern of their amylose populations. Carbohydrate Polymers, 56, 219–226.
Chi, H.; Xu, K; Chen, Q.; Xue, D.; Song, C.; Zhang, W.; Wang, P. (2008). Effect of acetylation on the properties of corn starch. Food Chemistry, 106, 923–928.
Choi, S. G.; Kerr, W. L. (2003). Effects of chemical modification of wheat starch on molecular mobility as studied by pulsed 1H NMR. Lebensmittel-Wissenchaft und -Technologie, 51, 1–8.
Cooke, D.; Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinization: origin of the enthalpic transition. Carbohydrate Research, 227, 103–112.
Daramola, B.; Osanyinlusi, S. A. (2006). Investigation on modification of cassava starch using active components of ginger roots (Zingiber officinale Roscoe). African Journal of Biotechnology, 5, 917–920.
Das, A. B.; Singh, G.; Singh, S.; Riar, C. S. (2010). Effect of acetylation and dual modification on physic-chemical, rheological and morphological characteristics of sweet potato (Ipomoea batatas) starch. Carbohydrate Polymers, 80, 725–732.
Davies, L. (1995). Starch-composition, modifications, applications and nutritional value in foodstuffs. Food Technology Europe, 6/7, 44–52.
de Graaf, R. A.; Broekroelofs, A.; Jamssen, L. P. B. M. (1998). The acetylation of starch by reactive extrusion. Starch/Starke, 50, 198–205.
Dicke, R. (2004). A straight way to regioselectively functionalized polysaccharide esters. Cellulose, 11, 255–263.
Diop, C. I. K.; Li, H. L.; Xie, B. J.; Shi, J. (2010). Effect of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chemistry, 126, 1662–1669.
Fornal, J.; Sadowska, J.; Błaszczak, W.; Jeliński, T.; Stasiak, M.; Molenda, M.; Hajnos, M. (2012). Influence of some chemical modifications on the characteristics of potato starch powders. Jourmal of Food Engineering, 108, 515–522.
Forssell, P.; Hamunen, A.; Autio, K.; Suortti, T.; Poutanen, K. (1995). Hypochlorite oxidation of barley and potato starch. Starch/Starke, 40, 371–377.
Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. (2010). NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics, 29, 2176–2179.
Gallant, D. J.; Bouchet, B.; Baldwin, P. M. (1997). Microscopy of starch: wvidence of a new level granule organization. Carbohydrate Polymers, 32, 177–191.
Gallant, D. J.; Bouchet, B.; Buleon, A.; Perez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic degradation. European Journal of Clinical Nutrition, 46, S3–S16.
Garcia, F. P.; Mendez, J. P.; Marzo, M. A. M.; Perez, L. A. B; Gutierrez, A. D. R. (2012). Modification and chemical characterization of barley starch. International Journal of Applied Science and Technology, 2, 30–39.
Garg, S.; Jana, A. K. (2011). Characterization and evaluation of acylated starch with different acyl groups and degrees of substitution. Carbohydrate Polymers, 83, 1623–1630.
Gidley, E. P; Bulpin, P. V. (1987). Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: Minimum chain-length requirement for the formation of double helices. Carbohydrate Research, 161, 291–300.
Gomand, S. V.; Lamberts, L.; Vissser, R. G. F.; Delcour, J. A. (2010). Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties. Food Hydrocolloids, 24, 424–433.
Gonzalez, Z.; Perez, E. (2002). Effect of acetylation on some properties of rice starch. Starch/Starke, 54, 148–154.
Gray, J. A.; BeMiller, J. N. (2004). Development and utilization of reflectance confocal laser scanning microscopy to locate reaction in modified starch granules. Cereal Chemistry, 81, 278–286.
Gunaratne, A.; Corke, H. (2007). Influence of prior acid treatment on acetylation of wheat, potato and maize starches. Food Chemistry, 105, 917–925.
Han, F.; Liu, M.; Gong, H.; Lu, S.; Ni, B.; Zhang, B. (2012). Synthesis, characterization and functional properties of low substituted acetylated corn starch. International Journal of Biological Macromolecules, 50, 1026–1034.
Hizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydrate Research, 147, 342–347.
Hizukuri, S.; Takeda, Y.; Yasuda, M.; Suzuki, A. (1981). Multi branched nature of amylose and action of debranching enzymes. Carbohydrate Research, 94, 205–213.
Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253–267.
Hoover, R.; Sosulski, F. (1986). Effect of cross-linking on functional properties of legume starches. Starch/Starke, 38, 149–155.
Hoover, R.; Vasanthan, T. (1994). The flow properties of native, heat-moisture treated, and annealed starches from wheat, oat, potato and lentil. Journal of Food Biochemistry, 18, 67–82.
Huang, J.; Schols, H. A.; Jin, Z.; Klaver, R.; Jin, Z.; Voragen, A. G. J. (2007a). Acetyl substitution patterns of amylose and amylopectin populations in cowpea starch modified with acetic anhydride and vinyl acetate. Carbohydrate Polymers, 67, 542–550.
Huang, J.; Schols, H. A.; Jin, Z.; Sulmann, E.; Voragen, A. G. J. (2007c). Characterization of differently sized granule fractions of yellow pea, cowpea and chickpea starches after modification with acetic anhydride and vinyl acetate. Carbohydrate Polymers, 67, 11–20.
Huang, J.; Schols, H. A.; Jin, Z.; Sulmann, E.; Voragen, A. G. J. (2007b). Pasting properties an (chemical) fine structure of acetylated yellow pea is affected by acetylation reagent type and granule size. Carbohydrate Polymers, 68, 397–406.
Huang, J.; Zhang, P.; Chen, Z.; Li, H. (2010). Characterization of remaining granules of acetylated starch after chemical surface gelatinization. Carbohydrate Polymers, 80, 215–221.
Jacobs, H.; Mischenko, N.; Koch, M. H. J.; Eerlingen, R. C.; Dwlcour, J. A.; Reynaers, H. (1998). Evaluation of the impact of annealing on gelatinization at intermediate water content of wheat and potato starches: A differential scanning calorimetry and small angle X-ray scattering study. Carbohydrate Research, 306, 1–10.
Jane, J.; Chen, Y. Y.; Lee, L. F.; McPherson, A. E.; Wong, K. S.; Radosavljevic, M.; Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76, 629–637.
Jane, J.; Kasemsuwan, T.; Chen, J. F.; Juliano, B. O. (1996). Phosphorus in rice and other starches. Cereal Foods World, 41, 827–832.
Jeong, J. H.; Bae, J. S.; Oh, M. J. (1993). Physico-chemical properties of rice starches. Korean Journal of Food Science and Technology, 25, 123–129.
Juszczak, L.; Fortuna, T.; Krok, F. (2003). Non-contact atomic force microscopy of starch granules surface. Part I. Potato and tapioca starches. Starch/Starke, 55, 1–7.
Kang, K. J.; Kim, S.; Lee, S. K.; Kim, S. K. (1997). Relationship between molecular structure of acid-hydrolyzed rice starch and retrogradation. Korean Journal of Food Science and Technology, 29, 876–881.
Karim, A. A.; Nadiha, M. Z.; Chen, F. K.; Phuah, Y. P.; Chui, Y. M.; Fazilah, A. (2008). Pasting and retrogradation properties of alkali-treates sago (Metroxylon sagu) starch. Food Hydrocolloids, 22, 1044–1053.
Kaur, B.; Ariffin, F.; Bhat, R.; Karim, A. A. (2012). Progress in starch modification in the last decade. Food Hydrocolloids, 26, 398–404.
Kaur, L.; Singh, N.; Singh, J. (2004). Factors influencing the properties of hydroxypropylated potato starches. Carbohydrate Polymers, 55, 211–223.
Kim, H.; Lee, J. H.; Kim, J.; Lim, W.; Lim, S. (2012). Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch/Starke, 64, 367–373.
Kim, R. E.; Ahn, S. Y. (1996). Gelling properties of acid-modified red bean starch gels. Agricultural Chemistry and Biotechnology, 39, 49–53.
Konik-Rose, C. M.; Moss, R.; Rahman, S.; Appels, R.; Stoddard, F. (2001). Evaluation of the 40 mg swelling test for measuring starch functionality. Starch/Starke, 53, 14–20.
Laohaphatanaleart, K.; Piyachomkwan, K.; Sriroth, K.; Santisopasri, V. and Bertoft, E. (2009) A study of the inter structure in cassava and rice amylopectin. Starch/Starke. 61, 557–569.
Le Corre, D.; Bras, J.; Dufresne, A. (2010). Starch nanoparticles: A review. Biomacromolecules, 11, 1139–1153.
Li, J. H.; Vasanthan, T. (2003). Hypochlorite oxidation of field pea starch and its suitability for noodle making using an extrusion cooker. Food Research International, 36, 381–386.
Li, J.; Yeh, A. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering, 50, 141–148.
Liebert, T.; Kulicke, W. M.; Heinze, Th. (2008). Novel approach towards hydrolytically stable starch acetates for physiological applications. Reactive & Functional Polymers, 68, 1–11.
Lim, S.; Seib, P. A. (1993). Preparation and pasting properties of wheat and corn starch phosphate. Cereal Chemistry, 70, 137–144.
Lin, J.; Pan, C; Hsu, Y.; Singh, H.; Chang, Y. (2006). Influence of moisture content on the degradation of waxy and normal corn starches acid-treated in methanol. Food Hydrocolloids, 26, 370–376.
Liu, Q.; Weber, E.; Currie, V.; Yada, R. (2003). Physicochemical properties of starches during potato growth. Carbohydrate Polymers, 51, 213–221.
Lloyd, N. E.; Kirst, L. C. (1963). Some factors affecting the tensile strength of starch films. Cereal Chemistry, 40, 154–161.
Lopez-Rubio, A.; Clarke, J. M.; Scherer, B.; Topping, D. L.; Gilbert, E. P. (2009). Structural modifications of granular starch upon acylation with short-chain fatty acids. Food Hydrocolloids, 23, 1940–1946.
Lopez-Rubio, A.; Flanagan, B. M.; Gilbert, E. P.; Gidley, M. J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers, 89, 761–768.
Luo, Z; Shi, Y. (2012). Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties. Journal of Agriculture and Food Chemistry, 60, 9468–9475.
Mahmoud, Z.; Sitohy, M. Z.; El-Saadany, S. S.; Labib, S. M.; Zagazig, M. F. R. (2000). Physicochemical properties of different types of starch phosphate monoesters. Starch/Starke, 52, 101–105.
Mark, A. M.; Mahltretter, C. L. (1972). Facile Preparation of starch triacetates. Die Starke, 3, 73–100.
Mbougueng, P. D.; Tenin, D.; Scher, J.; Tchiegang, C. (2012). Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. Journal of Food Engineering, 108, 320–326.
Miles, M. J.; Morris, V. J.; Orford, P. D.; Ring, S. G. (1985). The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research, 135, 271–281.
Mishra, S.; Rai, T. (2006). Morphology and function properties of corn, potato, and tapioca starch. Food Hydrocolloids, 20, 557–566.
Miyazaki, M.; Hung, P. V; Maeda, T; Morita N. (2006). Recent advances in application of modified starches for breadmaking. Trends in Food Science & Technology, 17, 591–599
Moorthy, S. N. (2002). Physicochemical and functional properties of tropical tuber starches: a review. Starch/Starke, 54, 559–592.
Morrison, W. R.; Karkalas, J. (1990). Starch. methods in plant biochemistry. In P. M. Dey (Ed.), Carbohydrates (pp. 323-352). New York: Chapmen and Hall.
Mua, J. P.; Jackson, D. S. (1997). Fine structure of corn amylose and amylopectin fraction s with various molecular weights. Journal of Agriculture and Food Chemistry, 45, 3840–3847.
Muhrbeck, P.; Eliasson, A. C. (1987). Influence of pH and ionic strength on the viscoelastic properties of starch gels—A comparison of potato and cassava starches. Carbohydrate Polymers, 7, 291–300.
Myers A. M.; Morell, M. K.; James, M. G.; Ball, S. G. (2000). Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiology, 122, 989–997.
Nachtergaele, W. (1989). The benefits of cationic starches for the paper industry. Starch/Starke, 41, 27–31.
Noda, T.; Tsuda, S.; Mori, M.; Takigawa, S.; Matsuura-Endo, C.; Saito, K.; Mangalika, W. H. A.; Hanalka, A.; Suzuki, Y.; Yamauchi, H. (2004). The effect of harvest dates on the starch properties of various potato cultivars. Food Chemistry, 86, 119–125.
Nor Nadiha, M. Z.; Fazilah, A.; Bhat, R.; Karim, A. A. (2010). Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chemistry, 121, 1053–1059.
Nunez-Santiago, C.; Garcia- Suarez, F. J. L.; Roman- Gutierrez, A. D.; Bello-Perez, L. A. (2010). Effect of reagent type on the acetylation of barley and maize starches. Starch/Starke, 62, 489–497.
Nutting, G. C. (1951). Effect of electrolytes on the viscosity of potato starch pastes. Journal of colloid science, 7, 128–139.
O’Brien, G. M.; Mbome, L.; Taylor, A. J.; Poulter, N. H. (1992). Variations in cyanogen content of cassava during village processing in Cameroon. Food Chemistry, 44, 131–136.
Ong, M. H.; Jurnel, K.; Tokarczuk, P. F.; Blanshard, J. M. V.; Harding, S. E. (1994). Simultaneous determinations of the molecular weight distributions of amyloses and the fine structures of amylopectins o native starches. Carbohydrate Research, 260, 99–117.
Osundahunsi, O. F.; Titilope seidu, K.; Muellet, R. (2011). Dynamic rheological and physicochemical properties of annealed starches from two cultivars of cassava. Carbohydrate Polymers, 83, 1916–1921.
Osunsam, A. T.; Akingbala, J. O.; Oguntimein, G. B. (1989). Effect of storage on starch content and modification of cassava starch. Starch/Starke, 41, 54–57.
Pal, S.; Mal, D.; Singh, R. P. (2005). Cationic starch: an effective flocculating agent. Carbohydrate Polymers, 59, 417–423.
Park, H.; Xu, S.; Seetharaman, K. (2011). A novel in situ atomic force microscopy imaging technique to probe surface morphological features of starch granules. Carbohydrate Research, 346, 847–853.
Parovuori , P.; Hamunen, A.; Forssell, P.; Autio, K.; Poutanen, K. (1995). Oxidation of potato starch by hydrogen peroxide. Starch/Starke, 47, 19–23.
Peat, S.; Whelan, W. J.; Thomas, G. J. (1956) The enzymatic synthesis and degradation of starch. Part XXII. Evidence of multiple branching in waxy-maize starch. A correlation. Journal of Chemistry Society, 3025–3030.
Perez, S.; Baldwin, P. M.; Gallant D. J. (2009). Structural features of starch granules I. In R. L. Whistler, J. N. BeMiller (Eds.), Starch: Starch Chemistry and Technology. 3rd ed. (pp. 149–192). New York: Academic Press.
Raina, C. S.; Singh, S.; Bawa, A. S.; Saxena, D. C. (2005). Rheological properties of chemically modified rice starch model solutions. Journal of Food Process Engineering, 29, 134–148.
Raina, C. S.; Singh, S.; Bawa, A. S.; Saxena, D. C. (2007). A comparative study of Indian rice starches using different modification model solutions. LWT-Food Science and Technology, 40, 855–892.
Reddy, N.; Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chemistry 118, 703–711.
Rickard, J. R.; Asoaka, M. A.; Blanashard, J. M. V. (1991). The physicochemical properties of cassava starch. Tropical Science, 31, 189–207.
Ridout, M. J.; Gunning, A. P.; Parker, M. L.; Wilson, R. H.; Morris, V. J. (2002). Using AFM to image the internal structure of starch granules. Carbohydrate Polymer, 50, 123–132.
Rutenberg, M. W.; Solarek, D. (1984). Starch derivatives: production and uses. In R. L. Whistler, J. N. BeMiller, & E. F. Paschall (Eds.), Starch chemistry and technology 2nd ed. (pp. 311–389). New York: Academic Press.
Sandhu, K. S.; Singh, N.; Lim, S. (2007). A comparison of native and acid thinned normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT-Food Science and Technology, 40, 1527–1536.
Sasaki, T.; Matsuki, J. (1998). Effect of wheat starch structure on swelling power. Cereal Chemistry, 74, 525–529.
Seidel, C.; Kulicke, W.; Heβ, C.; Hartmann, B; Lechner, M. D.; Lazik, W. (2001). Influence of the cross-linking agent on the gel structure of starch derivatives. Starch/Starke, 53, 305–310.
Seow, C. C.; Thevamalar, K. (1993). Internal plasticization of granular rice starch by hydroxypropylation: Effects on phase transitions associated with gelatinization. Starch, 45, 85–88.
Sha, X. S.; Xiang, Z. J.; Bin, L.; Jing, L.; Bin, Z.; Jiao, Y. J.; Kun, S. R. (2012). Preparation and physical characteristics of resistant starch (type 4) in acetylated indica rice. Food Chemistry, 134, 149–154.
Shi, Y.; Seib, P. A. (1992). The structure of four waxy starches related to gelatinization and retrogradation. Carbohydrate Polymer, 227, 131–145.
Shogren, R. L. (1995). Preparation, thermal properties, and extrusion of high-anylose starch acetates. Carbohydrate Polymers, 29, 57–62.
Shogren, R. L.; Biswas, A. (2006). Preparation of water-soluble and water-swellable starch acetates using microwave heating. Carbohydrate Polymers, 64, 16–21.
Shogren, R. L.; Biswas, A. (2010). Acetylation of starch with vinyl acetate in imidazolium ionic liquids and characterization of acetate distribution. Carbohydrate Polymers, 81, 149–151.
Shujun, W.; Jinlin, Y.; Wenyuan, G.; Jiping, P.; Hnogyan, L.; Jiugao, Y. (2007). Granule structure changes in native Chinese Yam (Dioscorea opposita Thunb var. Anguo) starch during acid hydrolysis. Carbohydrate Polymers, 69, 286–292.
Singh, A. V.; Nath, L. K.; Guha, M. (2011). Synthesis and characterization of highly acetylated sago starch. Starch/Starke, 63, 523–527.
Singh, J.; Kaur, L.; McCarthy, O. J. (2007). Factors influencing the physic-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21, 1–22.
Singh, J.; Kaur, L.; Singh, N. (2004). Effect of acetylation on some properties of corn and potato stares. Starch/Starke, 56, 586–601.
Singh, J.; Singh, N.; Saxena, S. K. (2002). Effect of fatty acids on the rheological properties of corn and potato starch. Journal of Food Engineering, 52, 9–16.
Singh, N.; Singh, J.; Kaur, L.; Sodhi, N. S.; Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81, 219–231.
Srichuwong, S.; Sunarti, T. C.; Mishima, T.; Isono, N.; Hisamatsu, M. (2005). Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohydrate Polymers, 62, 25–34.
Suflet, D. M.; Pelin, I. M.; Timpu, D.; Popescu, I. (2013). pH-sensitive multilayers based on maleic acid terpolymers with weak and strong acid moieties. Colloids and Surfaces A: Physicochem. Eng. Aspects, 436, 113– 122.
Suri, S.; Schmidt, C. E. (2009). Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomaterialia, 5, 2385–2397.
Swinkels, J. J. M. (1985). Composition and properties of commercial native starches. Starch/Starke, 37, 1–5.
Szymońska, J.; Krok, F. (2003). Potato starch granule nanostructure studied by high resolution non-contact AFM. International Journal of Biological Macromolecules, 33, 1–7.
Tabata, S.; Hizukuri, S. (1971). Studies on starch phosphates. Part 2. Isolation of glucose 3-phosphate and maltose phosphate by acid hydrolysis of potato starch. Starch/Starke, 23, 267–272.
Tabata, S.; Nagata, K.; Hizukuri, S. (1975). Studies on starch phosphates. Part 3. On the esterified phosphates in some cereal starches. Starch/Starke, 27, 333–335.
Takeda, Y.; Hizukuri, S. (1981). Location of phosphate groups in potato amylopectin. Carbohydrate Research, 102, 321–327.
Teramoto, N.; Shibata, M. (2006). Synthesis and properties of pullulan acetate. Thermal properties, biodegradability, and a semi-clear gel formation in organic solvents. Carbohydrate Polymers, 63, 476–481.
Tessler, M. M.; Billmers, R. L. (1996). Preparation of starch esters. Journal of Environmental Polymer Degradation, 4, 85–89.
Tester, R. F.; Karkalas, J. (2002). Starch. In E. J. Vandamme, S. De Baets, & A. Steinbuchel (Eds.). Biopolymers, vol.6, Polysaccharides II. Polysaccharides from eukaryotes (pp. 381–438). Weinheim: Wiley.
Tester, R. F.; Karkalas, J.; Qi X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39, 151–165.
Tharanathan, R. N. (2005). Starch—value addition by modification. Food Science and Nutrition, 45, 371–384.
Thirathumthavorn, D.; Charoenrein, S. (2005). Thermal and pasting properties of acid-treated rice starches. Starch/Starke, 57, 217–222.
Thomas, D. J.; Atwell, W. A. (1999). Starches. Minnesota: The American Association of Cereal Chemists, Inc.
van de Velde, F.; van Riel, J.; Tromp, R. H. (2002). Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). Journal of the Science of Food and Agriculture, 82, 1528–1536.
Waduge, R. N.; Hoover, R.; Vasanthan, T.; Gao, J.; Li, J. (2006). Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Research International, 39, 59–77.
Wang, Y.; Truong, V.; Wang, L. (2003). Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydrate polymers, 52, 327–333.
Wang, Y.; Wang, L. (2002). Characterization of acetylates waxy maize starches prepares under catalysis by different alkali and alkaline-earth hydroxides. Starch/Starke, 54, 25–30.
Woo, K. S.; Seib, P. A. (2002). Cross-linked resistant starch: Preparation and properties. Cereal Chemistry, 79, 819–825.
Woo, K.; Seib, P. A. (1997). Cross-linked of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydrate Polymers, 33, 263–271.
Wootton M.; Manatsathit, A. (1983). The influence of molar substitution on the water binding capacity of hydroxypropyl maize starches. Starch/Starke, 35, 92–94.
Wu, H. C. H.; Sarko, A. (1978). The double-helical molecular structure of crystalline A-amylose. Carbohydrate Research, 61, 27–40.
Wurzburg, O. B. (1986). Converted starches. In O. B. Wurzburg (Ed.), (pp. 17–40). Modified starches: Properties and uses, Boca Raton, FL: CRC Press.
Yoo, S.; Jane, J. (2002). Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with muti-angle laser-light scattering and refractive index detectors. Carbohydrate Polymers, 49, 307–314.
Yuan, K.; Liao, L.; Wang, Y.; Zhang, Z.; Chen, D.; Wang, C. (2013). Individual and combines effects of modifies starch, bentonite and their composite powder with HPMC on the performance of cement mortars. Journal of Polymer Engineering, 33, 551–555.
Yusuph, M.; Tester, R. F.; Ansell, R.; Snape, C. E. (2003). Composition and properties of starches extracted from tubers of different potato varieties grown under the same environmental conditions. Food Chemistry, 82, 283–289.
Zhang, G.; Hamaker, B. R. (2009). Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Food Science and Nutrition, 49, 852–867.
Zobel, H. F. (1988). Starch crystal transformations and their industrial importance. Starch/Starke, 40, 1–7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56557-
dc.description.abstract乙醯酯化澱粉目前已被廣泛的運用於食品工業當中,作為增稠劑、黏著劑或穩定劑之用。但近來有業者發現乙醯酯化澱粉之加工性質會隨著儲藏時間的增加而變差,此現象在高溫的環境下特別明顯。故本試驗旨在對馬鈴薯澱粉及樹薯澱粉進行乙醯酯化修飾,並對其進行不同溫度之儲藏試驗,以了解儲藏過程中乙醯酯化澱粉之性質改變情形,並藉此近一步了解乙醯酯化澱粉在儲藏過程中性質改變之原因。研究的第一部分利用不同醋酸乙烯酯的添加量對澱粉進行修飾,發現反應試劑的添加量與取代度有良好之相關性,且取代度與澱粉糊液之尖峰黏度與成糊溫度也有良好之相關性,並成功製備取代度約為0.08之乙醯酯化馬鈴薯澱粉(acetalyed potato starch, AP)與樹薯澱粉(acetylated tapioca starch, AT)。第二部分利用自行製備之澱粉於25、35、40與45°C下進行儲藏,發現AP與AT在儲藏過後皆有尖峰黏度下降、回凝黏度下降、pH值下降與電導度值上升之現象,且以上現象皆隨著儲藏溫度與時間的增加而加劇。利用水洗步驟降低AP與AT之電導度後進行儲藏,則上述現象變化更為劇烈,顯示水洗步驟會降低乙醯酯化澱粉之儲藏穩定性,且水洗步驟對AT之影響較對AP之影響為大。第三部分以變化最劇烈之儲存環境,45°C儲藏0天與55天之樣品,進行流變性質、膨潤力、溶解度、分子量、熱性質、結晶性質、表面型態、NMR與表面電荷之觀察與測定。藉由流變性質、膨潤力、溶解度與分子量之測定結果,推測在經過儲藏後,乙醯酯化澱粉之分子結構受到破壞,且以NMR確認乙醯酯化澱粉在儲藏後,有取代度下降伴隨醋酸生成之現象。熱性質與結晶性質之結果發現,乙醯酯化樹薯澱粉在經過儲藏後有澱粉分子重新排列之現象。但表面電荷量下降與澱粉粒表面變化之現象則僅發生在乙醯酯化馬鈴薯澱粉,此現象應是儲蔵期間馬鈴薯澱粉分子上之磷酸根掉落所導致。在天然組澱粉(天然澱粉)與控制組澱粉(修飾環境處理澱粉)的儲藏試驗部分,發現天然馬鈴薯澱粉之糊液黏度、pH值與電導度會隨著儲藏時間的延長而改變,且以控制組馬鈴薯澱粉性質改變最為劇烈,但流變性質、膨潤力、溶解度、分子量、熱性質與表面電荷則與修飾澱粉有相同之變化現象,代表這些性質改變主要發生在修飾後之澱粉因儲存而改變。天然樹薯澱粉與控制組樹薯澱粉在經儲藏後性質皆無顯著變化。最後由ICP-OES測定水洗步驟對澱粉內部離子含量之影響,發現馬鈴薯澱粉可以保留較多之鹽類,且不易被電導度計測到。綜合以上結果,推測乙醯酯化澱粉加工性質之改變可能是因為乙醯基斷裂成為醋酸後,除了增加環境之電導度值與降低其pH值外,更破壞澱粉分子之結構。而醋酸酯化澱粉中存在之鹽類,可以減緩酸釋放之速度,使澱粉之儲藏穩定性提高,因此,澱粉修飾後之過度水洗步驟反而對其儲藏穩定性有不良的效應,尤其是對磷酸根含量較低之樹薯澱粉影響更劇。zh_TW
dc.description.abstractAcetylated starches with a relatively low degree of substation (DS) are widely used in the food industries as a thicker, viscosity modifier and stabilizer. Recently, it has been noticed that the viscosity of commercial acetylated potato starch and tapioca remarkably drop during transportation and storage, especially on hot summer days. The aim of this study is to prepare acetylated potato starch and tapioca starch with different amounts of vinyl acetate. Next, stored modify starch at different temperatures to reveal the instability of acetylated potato starch and tapioca starch by monitoring the viscosity, pH value and conductivity charges during storage. Finally, we detected the changes of physicochemical properties of starches after storage to figure out the mechanism or factors caused the instability of acetylated starches during storage. First, we modified potato and tapioca starch with different amounts of vinyl acetate. The amount of vinyl acetate had good correlation to DS, with good correlations to peak viscosity and pasting temperature. Secondly, acetylated potato starch (AP) and acetylated tapioca starch (AT) were stored at 25, 35, 40 and 45°C up to 2 months and their DS, conductivities, pH and pasting properties during storage were investigated. In order to realize if impurities or ions will affect the stability of AP and AT, other two low conductivity counterparts (AP-w & AT-w) were also prepared by continuous washing process. DS and pH of all acetylated starches decreased with time, while the conductivity increased with time during storage. The decreases of PV and SB were observed in all acetylated starches and the rate of decreasing in viscosity increased with the increases of storage temperatures. The changes of DS, pH, conductivity and viscosity of AP-w and AT-w were more obvious than AP and AT at all storage temperatures. Next, the rheology properties, swelling power, solubility, molecular weight, thermal properties, XRD, morphology, NMR and surface charge of AP, AP-w, AT and AT-w before and after 45°C 55 days’ storage were investigated. It was found that molecular structure of all acetylated starch was disrupted during storage. The acetylated starch showed a decrease of DS and followed by producing acetic acid which could be detected by NMR. Besides, AT and AT-w might rearrange during storage which could be detected by DSC and XRD. Surface of AP-w starch granule would become smooth after storage but not in AT-w. Surface charge decreased after storage which might result from the release of phosphate groups from potato starch. Storage test of native starch (NP and NT) and control starch (CP and CT) were also carried out. Both NP and CP were instable during storage, especial for the CP. It could be detected by the decreases of viscosity and pH value and the increase of conductivity, while the other properties were almost the same before and after storage. All physicochemical properties of NT and CT remained the same after storage. It revealed that potato starch was instable inherently and only modified tapioca starch would become instable after modification. Finally, we used ICP-OES to investigate the amount changes of ions before and after washing process. Potato starch could reserve more ions than tapioca starch. To sum up, acetyl group of acetylated starch would be hydrolyzed and produced acetic acid during storage. Acetic acid might disrupt starch molecules, resulting in the changes of physicochemical properties of acetylated starch. Acetylated potato starch was more instable than acetylated tapioca starch, although washing process significantly affected tapioca starch. We proposed that the phosphate groups in potato starch held more counter ions which slow down the degradation of acetylated potato starch molecules.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:34:43Z (GMT). No. of bitstreams: 1
ntu-103-R01623011-1.pdf: 7873795 bytes, checksum: df2d1c087d5c0ad1d1b6a1fe3b1e5815 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要............................................................................................................................i
Abstract............................................................................................................................iii
目錄...................................................................................................................................v
圖目錄..............................................................................................................................ix
表目錄.............................................................................................................................xii
第一章、前言.....................................................................................................................1
實驗架構示意圖...............................................................................................2
第二章、文獻整理.............................................................................................................5
一、澱粉.....................................................................................................................5
(一) 澱粉分子.....................................................................................................5
(二) 澱粉內部結構.............................................................................................6
(三) 澱粉之結晶型態.........................................................................................8
(四) 馬鈴薯澱粉.................................................................................................9
(五) 樹薯澱粉..................................................................................................12
二、修飾澱粉............................................................................................................13
(一) 化學修飾澱粉..........................................................................................14
(二) 乙醯酯化澱粉..........................................................................................17
第三章、材料與方法.......................................................................................................24
一、試驗材料與化學試劑........................................................................................24
二、修飾澱粉製備....................................................................................................24
(一) 乙醯酯化馬鈴薯澱粉製備....................................................................24
(二) 乙醯酯化樹薯澱粉製備........................................................................26
三、儲存試驗............................................................................................................26
四、澱粉性質測定....................................................................................................29
(一) 取代度測定............................................................................................29
(二) 電導度值與pH值測定..........................................................................29
(三) 糊液黏度性質測定................................................................................30
(四) 傅立葉轉換紅外線光譜(FT-IR)............................................................30
(五) 流變性質測定........................................................................................30
(六) 膨潤力與溶解度測定............................................................................31
(七) 表面型態觀察........................................................................................32
(八) 分子量分布測定....................................................................................32
(九) 熱性質測定............................................................................................33
(十) 1H NMR測定..........................................................................................33
(十一) 結晶性質測定....................................................................................34
(十二) 表面電位測定....................................................................................34
(十三) 離子總量與離子種類測定................................................................34
五、統計分析............................................................................................................35
第四章、結果與討論.......................................................................................................36
一、醋酸乙烯酯添加量對乙醯酯化馬鈴薯澱粉與樹薯澱粉理化性質之影響....36
(一)乙醯酯化馬鈴薯澱粉之理化性質..........................................................36
1. 取代度、pH值與電導度.....................................................................36
2. 糊液黏度性質.....................................................................................39
(二) 醋酸乙烯酯添加量對乙醯酯化樹薯澱粉理化性質之影響................41
1. 取代度、pH值與電導度.....................................................................41
2. 糊液黏度性質.....................................................................................42
(三) 小結........................................................................................................44
二、乙醯酯化馬鈴薯澱粉與樹薯澱粉之儲藏性質探討........................................45
(一) 儲藏溫度對乙醯酯化馬鈴薯澱粉理化性質之影響............................45
1. 糊液黏度性質.....................................................................................45
2. pH值、電導度與取代度......................................................................47
(二) 水洗步驟對乙醯酯化馬鈴薯澱粉儲藏後理化性質之影響................49
1. 糊液黏度性質.....................................................................................49
2. pH值、電導度與取代度......................................................................51
(三) 儲藏溫度對乙醯酯化樹薯澱粉理化性質之影響................................52
1. 糊液黏度性質.....................................................................................52
2. pH值、電導度與取代度......................................................................54
(四) 水洗步驟對乙醯酯化樹薯澱粉儲藏後理化性質之影響....................56
1. 糊液黏度性質.....................................................................................56
2. pH值、電導度與取代度......................................................................58
(五) 乙醯酯化馬鈴薯澱粉與乙醯酯化樹薯澱粉儲藏性質之比較............59
三、儲藏後澱粉性質改變之機制探討...........................................................................60
(一) 乙醯酯化澱粉儲藏後物理性質改變....................................................60
1. 流變性質改變.....................................................................................60
2. 膨潤力與溶解度改變.........................................................................62
3. 分子量分布改變.................................................................................64
4. 熱性質改變.........................................................................................68
5. 結晶性質改變.....................................................................................71
6. 表面型態觀察.....................................................................................72
(二) 乙醯酯化澱粉儲藏後化學性質改變....................................................74
1. NMR測定............................................................................................74
2. 表面電荷改變.....................................................................................77
(三) 乙醯酯化澱粉性質改變小結................................................................78
(四) 天然澱粉與控制組澱粉之儲藏試驗....................................................79
1. 糊液黏度性質.....................................................................................79
2. pH值與電導度值................................................................................81
3. 流變性質.............................................................................................83
4. 膨潤力與溶解度.................................................................................84
5. 分子量分布.........................................................................................86
6. 熱性質.................................................................................................88
7. 表面電荷.............................................................................................89
(五) 天然澱粉與控制組澱粉之儲藏試驗小結............................................91
(六) 水洗步驟對澱粉離子含量之影響........................................................92
1. 馬鈴薯澱粉.........................................................................................92
2. 樹薯澱粉.............................................................................................93
3. 馬鈴薯澱粉與樹薯澱粉之比較.........................................................93
第五章、結論...................................................................................................................95
第六章、參考文獻...........................................................................................................97
dc.language.isozh-TW
dc.title乙醯酯化馬鈴薯澱粉與樹薯澱粉儲藏穩定性之探討zh_TW
dc.titleStability of acetylated potato starch and tapioca starch during storageen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂廷璋,張永和,邵貽沅
dc.subject.keyword乙醯酯化馬鈴薯澱粉,乙醯酯化樹薯澱粉,醋酸乙烯酯,儲藏穩定性,理化性質,表面電荷,離子含量,zh_TW
dc.subject.keywordacetylated potato starch,acetylated tapioca starch,vinyl acetate,physicochemical properties,surface charge,ions content,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
7.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved