Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56552
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周中哲(Chung-Che Chou)
dc.contributor.authorTsung-Han Wuen
dc.contributor.author吳宗翰zh_TW
dc.date.accessioned2021-06-16T05:34:27Z-
dc.date.available2016-09-04
dc.date.copyright2014-09-04
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation1. AISC (American Institute of Steel Construction). Seismic provisions for structural steel buildings. Chicago, IL. 2010.
2. AISC (American Institute of Steel Construction). Manual of steel construction load and resistance factor design. Chicago, IL. 2010.
3. Chou C-C, Chung P-T (2014). “Development of Cross-Anchored Dual-Core Self-Centering Braces for Seismic Resistance.” J. Constructional Steel Research, 101, 19-32.
4. Chou C-C, Chen Y-C, Pham D-H, Truong V-M (2014). “Steel Braced Frames with Dual-Core SCBs and Sandwiched BRBs: Mechanics, Modeling and Seismic Demands.” Engineering Structures, 72, 26-40.
5. Chou C-C, Chen Y-C (2013). “Development of Steel Dual-Core Self-Centering Braces: Quasi-Static Cyclic Tests and Finite Element Analyses” Earthquake Spectra, (doi: http://dx.doi.org/10.1193/082712EQS272M, available online September 6, 2013)
6. Chou C-C, Chen Y-C, Chung P-T, Pham D-H, Liu J-H (2013). “Low-Damage Earthquake-Resisting Systems Using Sandwiched Buckling-Restrained Braces and Dual-Core Self-Centering Braces” Applied Mechanics and Materials, 353-356,1946-1958.
7. Chou C-C, Lo S-W, Liou G-S (2013). “Internal Flange Stiffened Moment Connections with Low-Damage Capability under Seismic Loading” J. Constructional Steel Research, 87, 38-47.
8. Chou C-C, Chen Y-C (2012). “Development and Seismic Performance of Steel Dual-Core Self-Centering Braces.”15th World Conference on Earthquake Engineering, September 24-28, Lisbon, Portugal. (Paper No. 1648)
9. Chou C-C, Chen Y-C, Pham D-H, Truong V-M (2012). “Experimental and Analytical Validation of Steel Dual-CoreSelf-Centering Braces For Seismic-Resisting Structures.” 9th International Conference on Urban Earthquake Engineering/4th Asia Conference on Earthquake Engineering, March 6-8, Tokyo, Japan.
10. Chou C-C, Chen Y-C (2012).“Development of Steel Dual-Core Self-Centering Braces with E-Glass FRP Composite Tendons: Cyclic Tests and Finite Element analyses.” The International Workshop on Advances in Seismic Experiments and Computations, Nagoya, Japan.
11. Chou C-C, Chung P-T (2012). “Effects of Bonded Material and Concrete Infill in Sandwiched BRBs Subjected to Cyclic and Near-Field Loadings”. The Twenty-fifth KKCNN Symposium on Civil Engineering, Busan, Korea.
12. Chou C-C, Chen Y-C (2012). “Development and seismic performance of steel dual-core self-centering braces”. 15th World Conference on Earthquake Engineering, Lisbon, Portugal. (Paper No. 1648)
13. Chou C-C, Chen Y-C, Pham D-H, Truong V-M (2012). “Experimental and analytical validation of steel dual-core self-centering braces for seismic-resisting structures”. 9th International Conference on Urban Earthquake Engineering/4th Asia Conference on Earthquake Engineering, Tokyo, Japan.
14. Chou C-C, Liu J-H (2012). “Frame and brace action forces on steel corner gusset plate connections in buckling-restrained braced frames”. Earthquake Spectra, 28(2), 531-551.
15. Chou C-C, Liu J-H, Pham D-H (2012). “Steel buckling-restrained braced frames with single and dual corner gusset connections: seismic tests and analyses”. Earthquake Engineering and Structural Dynamics, 7(41): 1137-1156.
16. Chou C-C, Liu G-S, Yu J-C (2012). “Compressive behavior of dual-gusset-plate connections for buckling-restrained braced frames”, J. Constructural Steel Research, 76, 54-67.
17. Chou C-C, Chen Y-C, Chung P-T (2011). “Dual-Core Self-Centering Energy Dissipation Brace Apparatus”. US Patent (13/082780, accepted in 2012/9)
18. Chou C-C, Chen S-Y (2010). “Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces”. Engineering Structures, 32, 2108-2121.
19. Chou C-C, Chen P-J (2009). “Compressive behavior of central gusset plate connections for a buckling-restrained braced frame”. J. Constructional Steel Research, 65(5), 1138-1148.
20. C. Christopoulos, R. Tremblay, H.-J. Kim, M. Lacerte (2008). “Self-Centering Energy Dissipative Bracing System for the Seismic Resistance of Structures: Development and Validation”. Journal of Structural Engineering, 134(1):96-107.
21. Lin C. C. (2007). “Seismic Performance of Re-Centering Brace”. MS thesis. Thesis Advisor: K. C. Tsai. National Taiwan University, Taipei, Taiwan.
22. Lin C. L. (2006). “Seismic Behavior of Post-tensioned Steel Beam to Column Connection with Friction Devices”. MS thesis. Thesis Advisor: K. C. Tsai. National Taiwan University, Taipei, Taiwan.
23. Petty, G. D. (1999). “Evaluation of a friction component for a posttensioned steel connection”. MS thesis, Lehigh Univ., Bethlelem, Pa.
24. Rojas, P., J. M. Ricles, et al. (2005). “Seismic performance of post-tensioned steel moment resisting frames with friction devices”. Journal of Structural Engineering, 131(4): 529-540.
25. Ricles, J. M., R. Sause, et al. (2002). “Experimental evaluation of earthquake resistant posttensioned steel connections”. Journal of Structural Engineering, 128(7): 850-859.
26. Ricles, J. M., R. Sause, et al. (2001). “Posttensioned seismic-resistant connections for steel frames”. Journal of Structural Engineering, 127(2): 113-121
27. Sabelli R, Mahin S. and Chang C. (2003). Seismic Demands on Steel Braced Frame Buildings with Buckling-restrained Braces. Engineering Structures, Vol. 25: 655-666
28. Soong, T. T. and Dargush, G. F. (1997), “Passive Energy Dissipation Systems in Structural Engineering”, Wiley & Sons, New York.
29. R. Tremblay, M. Lacerte, C. Christopoulos (2008). “Seismic Response of Multistory Buildings with Self-Centering Energy Dissipative Steel Braces J. Structural Engineering”, ASCE, 134, 108-120.
30. Uang C-M, Kiggins S. (2003). “Reducing residual drift of buckling-restrained braced frames. Int. Workshop on Steel and Concrete Composite Construction”, Report No. NCREE-03-026, National Taiwan University, Taiwan.
31. 歐陽烈(2014)「新型鋼造一層樓雙核心自復位斜撐構架實驗與分析:含梁柱構架及斜撐軸向效應影響之接合板設計」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。
32. 周中哲, 鍾秉庭(2014)「交錨型雙核心自復位斜撐發展驗證: 耐震試驗及有限元素分析」結構工程(102-022,2014/1 accepted for publication)
33. 鄭宇岑(2014)「大型雙核心自復位斜撐及核心更換型挫屈束制斜撐反覆載重試驗研究」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。
34. 周中哲,陳映全(2012)「預力雙核心自復位斜撐發展與耐震實驗」結構工程,第二十七卷,第三期,108-126頁
35. 鍾秉庭(2012)「交錨型雙核心自復位斜撐及核心更換型挫屈束制斜撐之耐震行為」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。
36. 陳映全(2011)「雙核心自復位消能斜撐之發展與驗證」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。
37. 周中哲,陳映全(2012)「鋼造雙核心自復位斜撐發展與耐震實驗:應用複合纖維材料棒為預力構件」,土木工程學報,45(2),202-206,中國
38. 周中哲,陳映全(2012)「預力雙核心自復位斜撐發展與耐震實驗」結構工程,第二十七卷,第三期,108-126頁(in Chinese)
39. 周中哲,劉佳豪(2012)「可更換核心板之挫屈束制消能斜撐實尺寸構架耐震試驗:單與雙接合板設計及驗證」結構工程,第二十七卷,第二期,95-114頁(in Chinese)
40. 陳映全(2011)「雙核心自復位消能斜撐之發展與驗證」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。(in Chinese)
41. 周中哲,劉佳豪(2011)「挫屈束制消能斜撐構架接合板耐震設計及試驗分析」結構工程,第二十六卷,第四期,91-100頁(in Chinese)
42. 周中哲,陳昇陽(2010)「可更換核心板之挫屈束制消能支撐耐震試驗及有限元素分析」,結構工程,第二十五卷,第一期,43-70頁。 (in Chinese)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56552-
dc.description.abstract預力型自復位斜撐(SCB)是利用斜撐中的拉力構件束制斜撐中的鋼受壓構件,並在斜撐受軸拉與受軸壓下提供自復位能力,即在大變形下有回到零殘餘變形的能力。在拉力構件相同應變下,傳統雙核心自復位斜撐變形量可達兩倍傳統單核心自復位斜撐變形量(或是在相同斜撐變形量下,拉力構件額外應變減少一半),有效降低拉力構件彈性應變需求。本研究首次成功發展雙核心自復位斜撐構架,改變傳統構架在地震作用下容易產生殘餘變形,讓構架擁有自復位能力。本研究除了說明雙核心自復位斜撐構架設計流程外,並以動力分析20組地震下構架之反應,並設計及試驗兩組試體,分別為一組交錨型雙核心自復位斜撐構架及一組雙核心自復位斜撐構架,研究目的在於探討兩組雙核心自復位斜撐構架耐震行為。試驗結果顯示兩組雙核心自復位斜撐構架與理論預測相符,並在八次試驗與十四次試驗下擁有良好的穩定性與低殘餘變形之能力,兩組自復位斜撐的最大斜撐應變0.68%與0.69%分別對應最大拉力構件應變0.65%與0.67%。本研究並利用非線性靜動態三維結構分析程式PISA 3D模擬兩組雙核心自復位斜撐構架試驗行為,分析顯示與試驗結果及理論預測相符,證明雙核心自復位斜撐構架可利用非線性靜動態三維結構分析程式PISA 3D進行研究與設計。zh_TW
dc.description.abstractSelf-Centering Brace (SCB) uses tendons to constrain steel compression member of the brace and provides self-centering properties under brace in tension and compression that is restored to zero residual deformation. Conventional dual-core SCB has two times brace deformation capacity than conventional single-core SCB under same strain of tendons (or reduce to half the additional strain of tendons under same brace deformation capacity) that effectively reduce the elastic strain demand of tendons. This is the first study develop Self-Centering Brace Frame (SCBF) successfully that change the large residual deformation of conventional frame system under earthquake, SCBF provides self-centering properties under brace in tension and compression that is restored to small residual deformation. The objective of research was to compare the seismic performance of two SCBF. Test results indicate that the mechanism of SCBF1 and SCBF2 are consistent with prediction. After 8 tests and 14 tests, the SCBF 1 and SCBF 2 performed small residual deformation and stable. Maximum brace strain of two SCBs were 0.68% and 0.69% corresponding to maximum tendons strain 0.65% and 0.67%. This work study also uses the Platform of Inelastic Structural Analysis for 3D System software (PISA 3D) to analyze the test behavior of SCBF 1 and SCBF 2 and also compare with the test results and predictions which are proved similar. The analysis results shows SCBF can use PISA 3D software to do parametric study and design.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:34:27Z (GMT). No. of bitstreams: 1
ntu-103-R01521242-1.pdf: 45932755 bytes, checksum: 3714910064325ceb67229f98e780f269 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 5
1.4 研究目的 5
1.5 研究內容 6
第二章 雙核心自復位斜撐構架之力學行為與動力分析 7
2.1 前言 7
2.2 雙核心自復位斜撐力學行為 7
2.2.1 雙核心自復位斜撐 7
2.2.2 交錨型雙核心自復位斜撐 10
2.2.3 自復位斜撐之行為預測方法 13
2.3 雙核心自復位斜撐構架與抗彎矩構架之設計 20
2.3.1 雙核心自復位消能斜撐構架之設計 20
2.3.2 抗彎矩構架設計 30
2.4 三層樓自復位斜撐構架及抗彎矩構架之動力分析 32
2.4.1 動力分析流程 32
2.4.2 動力分析結果 33
第三章 雙核心自復位斜撐構架試體設計與試驗結果分析 35
3.1 前言 35
3.2 試體設計 35
3.3 材料性質 36
3.4 試驗試體構架裝置與載重歷時 36
3.4.1 油壓制動器 36
3.4.2 資料擷取系統 37
3.4.3 試驗載重歷時 37
3.4.4 試體等效阻尼比 38
3.4.5 試驗量測規劃 38
3.5 試體製造與試驗方式 39
3.5.1 斜撐試體組裝 39
3.5.2 拉力構件施拉預力 40
3.5.3 摩擦螺栓施加預張力 41
3.5.4 試驗方式 42
3.6 SCBF 1試驗結果與結果分析 43
3.6.1 試驗一與試驗二無摩擦消能試驗 43
3.6.2 試驗三標準試驗 47
3.6.3 試驗四至試驗七地震歷時試驗 53
3.6.4 試驗八疲勞試驗 55
3.7 SCBF 2試驗結果與分析 55
3.7.1 試驗一與試驗二無摩擦消能試驗 55
3.7.2 試驗三標準試驗 59
3.7.3 試驗四至試驗七地震歷時試驗 64
3.7.4 試驗八疲勞試驗 66
3.7.5 試驗九標準試驗 67
3.7.6 試驗十至試驗十三地震歷時試驗 72
3.7.7 試驗十四疲勞試驗 74
3.8 試驗結果比較 74
第四章 一層樓構架模型分析與試驗比較 80
4.1 前言 80
4.2 試體PISA3D模型建立 80
4.2.1 結構模型 80
4.2.2 材料性質 80
4.3 PISA3D分析結果 81
4.3.1 SCBF 1分析結果 81
4.3.2 SCBF 2分析結果 83
第五章 結論 87
參考文獻 90
dc.language.isozh-TW
dc.title新型鋼造雙核心自復位斜撐構架設計與耐震試驗行為zh_TW
dc.titleSeismic Design and Tests of a Novel Steel Dual-Core Self-Centering Braced Frame (SCBF)en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡克銓(Keh-Chyuan Tsai),陳誠直,許協隆,陳正誠
dc.subject.keyword雙核心自復位斜撐構架,構架設計流程,耐震試驗,動力分析,PISA 3D分析應用,zh_TW
dc.subject.keywordSelf-Centering Braced Frame,Seismic Design,Seismic Tests,Dynamic Analysis,PISA 3D Analysis,en
dc.relation.page264
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
44.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved