請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56547
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林宗男 | |
dc.contributor.author | Wei-Han Tseng | en |
dc.contributor.author | 曾韋翰 | zh_TW |
dc.date.accessioned | 2021-06-16T05:34:11Z | - |
dc.date.available | 2017-08-21 | |
dc.date.copyright | 2014-08-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-13 | |
dc.identifier.citation | [1] Y. Chen, Q. Yang, J. Yin, and X. Chai, “Power-efficient access-point selection for indoor location estimation,” IEEE Transactions on Knowledge and Data Engineering,, vol. 18, no. 7, pp. 877–888, July 2006. 2
[2] M. Youssef, A. Agrawala, and A. Udaya Shankar, “Wlan location determination via clustering and probability distributions,” in Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)., March 2003, pp. 143–150. 2 [3] C. Feng, W. Au, S. Valaee, and Z. Tan, “Received-signal-strength-based indoor positioning using compressive sensing,” IEEE Transactions onMobile Computing,, vol. 11, no. 12, pp. 1983–1993, Dec 2012. 2, 8, 46 [4] J. Liang, N. Corso, E. Turner, and A. Zakhor, “Image based localization in indoor environments,” in Fourth International Conference on Computing for Geospatial Research and Application (COM.Geo), 2013, July 2013, pp. 70–75. 5 [5] K. Kamarudin, S. Mamduh, A. Shakaff, S. Saad, A. Zakaria, A. Abdullah, and L. Kamarudin, “Method to convert kinect’s 3d depth data to a 2d map for indoor slam,” in IEEE 9th International Colloquium on Signal Processing and its Applications (CSPA), 2013, March 2013, pp. 247–251. 5 [6] T.-K. Dao, T.-T. Pham, and E. Castelli, “A robust wlan positioning system based on probabilistic propagation model,” in 9th International Conference on Intelligent Environments (IE), 2013, July 2013, pp. 24–29. 6 [7] S.-H. Fang, T.-N. Lin, and P. Lin, “Location fingerprinting in a decorrelated space,” IEEE Transactions on Knowledge and Data Engineering,, vol. 20, no. 5, pp. 685–691, May 2008. 7 [8] P. Bahl and V. Padmanabhan, “Radar: an in-building rf-based user location and tracking system,” in IEEE INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings., vol. 2, 2000, pp. 775–784 vol.2. 8, 46 [9] M. Youssef and A. Agrawala, “The horus wlan location determination system,” in Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’05. New York, NY, USA: ACM, 2005, pp. 205–218. [Online]. Available: http://doi.acm.org/10.1145/1067170.1067193 8, 46 [10] S.-H. Fang and T.-N. Lin, “Principal component localization in indoor wlan environments,” IEEE Transactions on Mobile Computing,, vol. 11, no. 1, pp. 100–110, Jan 2012. 14 [11] M. Youssef, A. Agrawala, and A. Udaya Shankar, “Wlan location determination via clustering and probability distributions,” in Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)., March 2003, pp. 143–150. 15 [12] C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. [Online]. Available: http://dx.doi.org/10.1023/A3A1009715923555 15 [13] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science, vol. 315, no. 5814, pp. 972–976, 2007. [Online]. Available: http://www.sciencemag.org/content/315/5814/972.abstract 17 [14] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Transactions on Neural Networks,, vol. 13, no. 2, pp. 415–425, Mar 2002. 19 [15] A. Kushki, K. Plataniotis, and A. Venetsanopoulos, “Kernel-based positioning in wireless local area networks,” IEEE Transactions on Mobile Computing,, vol. 6, no. 6, pp. 689–705, June 2007. 27 [16] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27, May 2011. [Online]. Available: http://doi.acm.org/10.1145/1961189.1961199 29 [17] A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik, “A support vector clustering method,” in Proceedings. 15th International Conference on Pattern Recognition, 2000., vol. 2, 2000, pp. 724–727 vol.2. 30 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56547 | - |
dc.description.abstract | 近幾十年來,室內定位技術發展得非常快速,許許多多的系統架構相繼被提出且實現,其中以使用Wi-Fi訊號強度作為辨識特徵最為常見,輕易使用行動裝置蒐集以及不用另外增加硬體是這項技術的最大特點。在眾多系統當中,準確率相當高的無線區域網路訊號紋系統是一個非常常見的架構,訊號紋系統在實行時大致可分為兩個階段:(1)離線階段,訊號紋資料庫蒐集及建立模組。(2)線上階段,接收訊號以及即時定位。
訊號紋資料庫的建立是藉由蒐集室內每個參考點的Wi-Fi訊號強度紀錄而成,若室內空間過大,則使用整個訊號紋資料庫會使即時定位的系統運算量非常大。一個減少運算量的好方法是將整個資料庫相似的參考點歸類為一群,則整個資料庫可分成較少的幾個群。傳統的分群方法包括k 平均值分群、支持向量機分群和近鄰傳播分群演算法。經過分群之後,同一個群中的參考點可能互相不相連且分散,利用權重定位演算法時,就可能將定位位置定在一些完全不可能出現的位置,例如百貨的中空區域或是樓與樓之間,我們將之稱為禁區問題。 在這篇研究的分群方法,除了傳統訊號強度的資訊之外,更加入地理上的資訊來增加分群結果在地理空間的群聚性,此種方法稱為加入地理資訊的間隔傳播分群演算法。使用支持向量機的間隔來作分群的一大優點是可以保留原始的訊號分佈。除此之外,在線上階段分群指配處理時,這篇論文也提出一個可適性的分群指配方式來產生群集合而不是只挑選機率最高的單一群。此種演算法增加了分群指配的準確率及定位精準度。 在這樣的室內定位系統中, 利用國立台灣大學博理館進行的室內定位系統可達到平均誤差1.15公尺的精準度。 | zh_TW |
dc.description.abstract | Indoor localization develops fast in recent years and many systems or architectures are proposed in this topic. Among these methods, receive signal strength of Wi-Fi is a common feature because of its easy collection and no need for additional hardware. Fingerprintbased system of WLAN is a common model for its high accuracy in indoor localization. The fingerprint methods can be classified into two stages in this approach:(1)the offline radio map construction and model training, and (2)the online measuring and location estimating. It collects features and records them from reference points of whole indoor environment to construct radio map. Due to the high computation complexity of location estimating with the whole radio map. The reference points are classified into some smaller clusters, which is called clustering. It is a good solution for reducing computation complexity of system. In traditional clustering methods, such as k-means, support vector clustering, or affinity propagation, reference points in the same cluster may be disjoint or far apart from each other. With weighted-sum-based methods of location estimation, the location may be located outside of the region of cluster, such as a hollow square or the area between different floors in a building. We call it Prohibition Area Problem. To solve the problem, unlike the traditional methods, we combine the information of signal domain and spatial domain to gain the compaction of clusters in spatial domain. A Margin Propagation with Spatial Clustering (MPSC) is proposed with this new perspective. Besides, one of advantages for clustering with margins of support vector machine is reserving the distribution of original signal. Moreover, in the online stage, the measurements are assigned to the corresponding cluster, which is called cluster matching. In traditional methods, a fixed number of clusters is chosen beforehand. However, the suitable number of clusters is not equal at different locations. The proposed method adaptively adds clusters with similar probabilities to form larger cluster set, which is called adaptive multi-cluster matching. It increases the accuracy of cluster matching and improves the localization performance. Finally, a kernel-based weighted sum of reference points in corresponding cluster set is used to give estimated location. This 3-D indoor localization system achieves 1.15m as average error in BL Building of National Taiwan University. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:34:11Z (GMT). No. of bitstreams: 1 ntu-103-R01942097-1.pdf: 1780862 bytes, checksum: c04ca10503bd4e68e9fe2d0c3204d7be (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | List of Figures iii
List of Tables v 1 Introduction 1 2 Related Works of Indoor Localization System 5 2.1 Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Fingerprint-based Approach . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 k Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Probabilistic approach . . . . . . . . . . . . . . . . . . . . 8 2.2.3 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . 8 3 Proposed Indoor Localization System 9 3.1 Radio Map Construction . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 AP selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Pre-filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 Margin Propagation with Spatial Clustering . . . . . . . . . . . . 14 3.5.1 SVM Margin . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5.2 Similarity from Signal and Spatial Information . . . . . . . 17 3.5.3 Margin Propagation with Spatial Clustering . . . . . . . . 18 3.5.4 The clusters in radio map . . . . . . . . . . . . . . . . . . 21 3.6 Adaptive Multi-cluster Matching . . . . . . . . . . . . . . . . . . 22 3.7 Kernel-based Localization . . . . . . . . . . . . . . . . . . . . . . 26 4 Simulation Results 29 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Performance of AP selection . . . . . . . . . . . . . . . . . . . . . 30 4.3 Pre-filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4 Comparison of Different Clustering Methods and Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5 Improvement of Adaptive Multi-cluster Matching . . . . . . . . . 44 4.6 Comparison of Different Indoor Localization Systems . . . . . . . 46 5 Conclusions 49 Bibliography 51 | |
dc.language.iso | en | |
dc.title | 基於新穎群聚演算法之三維室內定位系統 | zh_TW |
dc.title | A Novel 3-D Clustering-Based Indoor Localization System | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡子傑,廖婉君,陳俊良 | |
dc.subject.keyword | 室內定位,Wi-Fi,訊號紋,間隔傳播分群,支持向量機,地理資訊,分群指配, | zh_TW |
dc.subject.keyword | Indoor Localization,Wi-Fi,Fingerprint,Margin Propagation,Support Vector Machine,Spatial Information,Cluster Matching, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。