Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56531
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢義隆(I-Lung Chien)
dc.contributor.authorChun-Wei Changen
dc.contributor.author張峻維zh_TW
dc.date.accessioned2021-06-16T05:33:19Z-
dc.date.available2019-09-05
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation[1] 王大銘, 滲透蒸發技術之發展, 國立台灣大學「台大工程」學刊, 84, 119-127, 2002
[2] W. S. Ho and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, 1992
[3] Lipnizki, F., R.W. Field, and P.-K. Ten, Pervaporation-based hybrid process: a review of process design, applications and economics. Journal of Membrane Science, 1999. 153(2): p. 183-210.
[4] Huang, R.Y.M., Pervaporation membrane separation processes. Membrane science and technology series., 1991, New York: Elsevier.
[5] Wynn, N., Pervaporation Comes of Age. Chemical Engineering Progress, 2001. Oktober 2001: p. 66 – 72.
[6] Jonquieres, A., et al., Industrial state-of-the-art of pervaporation and vapour permeation in the western countries. Journal of Membrane Science, 2002. 206(1-2): p. 87-117.
[7] Sander, U. and P. Soukup, Design and operation of a pervaporation plant for ethanol dehydration. Journal of Membrane Science, 1988, 36, 463-475
[8] W. Kujawski, Application of Pervaporation and Vapor Permeation in Environmental Protection, Polish Journal of Environmental Studies, 2000, 9, 13-29
[9] J. Fontalvo, P. Cuellar, J. M. K. Timmer, M.. A. G. Vorstman, J. G. Wijers, J. T. F. Keurentjes, Comparing Pervaporation and Vapor Permeation Hybrid Distillation Processes. Ind. Eng. Chem. Res 2005. 44(14), 5259-5266.
[10] P. A. Kober, Pervaporation, perstillation and percrystallization, J. Amer. Chem. Soc., Vol. 39, 1917, p. 944.
[11] Y. Schwob, Sur l'hemipermeabilite a l'eau, des membranes de cellulose regeneree, T hese de Doctorat es Sciences, Toulouse (France), May, 1949.
[12] R. C. Binning, R. J. Lee, J. F. Jenning and E. C. Martin, Separation of liquid mixtures by permeation, Ind. Eng. Chem., 1961, Vol. 53, p.45.
[13] S. Zhang and E. Drioli, Review: pervaporation membranes, Sep. Sci. and Technol., 1995, 30, 1–31.
[14] R . W . Field, P . K . Ten, Organophilic pervaporation: prospects and performance, Chem.Eng. Journal, 1999, 73, 133
[15] H. Uwe and R. Robert, Design and optimization of combined pervaporation/distillation process for the production of MTBE, J. Membr. Sci., 1998, 146, 56–64
[16] P. D. Chapman, T. Olivera, A. G. Livingston, K. Li, Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci, 2008, 318, 5-37
[17] G.W. Meindersma, A.B. de Haan, Economical feasibility of zeolite membranes for industrial scale separations of aromatic hydrocarbons, Desalination, 2002, 149, 29-34
[18] W. Stephan, R. D. Noble, C. A. Koval, Design methodology for a membrane/distillation column hybrid process, J. Membr. Sci, 1995, 99, 259-272
[19] J. Bausa and W. Marquardt, Shortcut Design Methods for Hybrid Membrane/Distillation Processes for the Separation of Nonideal Multicomponent Mixtures. Industrial & Engineering Chemistry Research, 2000, 39(6), 1658-1672.
[20] Gooding, C.H. and F.J. Bahouth, Membrane-Aided Distillation Azeotropic Solutions. Chemical Engineering Communications, 1985. 35(1-6), 267-279
[21] M. Tsuyumoto, A. Teramoto, and P. Meares, Dehydration of ethanol on a pilot-plant scale, using a new type of hollow-fiber membrane. Journal of Membrane Science , 1997. 133(1): p. 83-94.
[22] J. Marriott and E. Sorensen, A general approach to modelling membrane modules. Chemical Engineering Science, 2003. 58(22), 4975-4990.
[23] S. Arifin and I-Lung Chien, Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer, Ind. Eng. Chem. Res, 2008, 47, 790-803
[24] Wang C.J.; Wong D.S.H.; Chien I.L.; Shih, R.F.; Liu, W.T.; Tsai, C.S., Critical Reflux, Parametric Sensitivity, and Hysteresis in Azeotropic Distillation of Isopropyl Alcohol + Water + Cyclohexane., Ind. Eng. Chem. Res., 1998, 37, 2835
[25] Pommier S., Massebeuf S., Kotai B, Lang P., Baudouin, O., Floquet, P., Gerbaud, V. Heterogeneous Batch Distillation Processes: Real System Optimisation. Chem. Eng. Proc. 2008, 47, 408
[26] Pham, Hoanh N., and Michael F. Doherty,Design and Synthesis of Heterogeneous Azeotropic Distillations – I. Heterogeneous Phase Diagrams, Chemical Engineering Science, 1990, 45, No. 7, 1823-1836
[27] Luyben, W.L., Control of a Column/Pervaporation Process for Separating the Ethanol/Water Azeotrope., Ind. Eng. Chem. Res., 2009. 48(7), 3484-3495
[28] A. Santoso, C. C. Yu, J. D. Ward, Analysis of local recycle for membrane pervaporation systems, Ind. Eng. Chem. Res. , 2012, 51, 9790-9802
[29] P. M. Hoch and J. Espinosa, Conceptual Design and Simulation Tools Applied to the Evolutionary Optimization of a Bioethanol Purification Plant, Ind. Eng. Chem. Res. 2008, 47, 7381–7389
[30] M. AngelicaSosaa and J. Espinosa, Feasibility analysis of isopropanol recovery by hybriddistillation/pervaporation process with the aid of conceptual models, Separation and Purification Technology 78 (2011) 237–244
[31] T. A.C. Oliveira, U. Cocchini, J. T. Scarpello, A. G. Livingston, Pervaporation mass transfer with liquid flow in the transition regime, J. Membr. Sci.,Vol 183 (2001) 119–133
[32] F. Lipnizki, J. Olsson, G. Tragardh, Scale-up of pervaporation for the recovery of natural aroma compounds in the food industry Part 2: optimisation and integration, Journal of Food Engineering 54 (2002) 197–205
[33] Z. Szitkai, Z. Lelkes, E. Rev, Z. Fonyo, Optimization of hybrid ethanol dehydration systems, Chemical Engineering and Processing 41 (2002) 631–646
[34] Patrick J. Hickey, Charles H. Goading, The economic optimization of spiral wound membrane modules for the pervaporative removal of VOCs from water, Journal of Membrane Science 97 ( 1994) 53-70
[35] B. K. Srinivas and M. M. El-Halwagi, Optimal design of pervaporation systems for waste reduction, Compufers them. Engng, Vol. 17, No. IO, pp. 957-970, 1993
[36] S. V. Suggala and P. K. Bhattacharya, Real Coded Genetic Algorithm for Optimization of Pervaporation Process Parameters for Removal of Volatile Organics from Water, Ind. Eng. Chem. Res. 2003, 42, 3118-3128
[37] N.R. Gopal , S.V. Satyanarayana, Cost analysis for removal of VOCs from water by pervaporation using NSGA-II, Desalination 274 (2011) 212–219
[38] W. JP, A. Hilalyb, S. K. Sikdarb, S. T. Hwanga, Optimization of multicomponent pervaporation for removal of volatile organic compounds from water, Journal of Membrane Science 97 ( 1994) 109-l 25
[39] C. Lipski and P. Cote, The Use of Pervaporation for the Removal of Organic Contaminants From Water, Environmental Progress, Vol. 9, No. 4, 1990, 254-261
[40] I. Blume, J.G. Wilmans and R.W. Baker, THE SEPARATION OF DISSOLVED ORGANICS FROM WATER BY PERVAPORATION, Journal of Membrane Science, 49 (1990) 253-286
[41] M.L. Maloncya, Th. Maschmeyerb, J.C. Jansena, Technical and economical evaluation of a zeolite membrane based heptane hydroisomerization process, Chemical Engineering Journal 106 (2005) 187–195
[42] V. V. Hoof, L. V. Abeele, A. Buekenhoudt, C. Dotremont, R. Leysen, Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol, Separation and Purification Technology 37 (2004) 33–49
[43] J. Bausa and W. Marquardt, Shortcut Design Methods for Hybrid Membrane/Distillation Processes for the Separation of Nonideal Multicomponent Mixtures, Ind. Eng. Chem. Res. 2000, 39, 1658-1672
[44] S. Sommer, Design and Optimization of Hybrid Separation Processes for the Dehydration of 2-Propanol and Other Organics, Ind. Eng. Chem. Res. 2004, 43, 5248-5259
[45] G.W. Meindersma, A.B. de Haan, Economical feasibility of zeolite membranes for industrial scale separations of aromatic hydrocarbons, Desalination 149 (2002) 29-34
[46] W. D. Seider, J. D. Seader, D. R. Lewin, Product and Process Design Principles: Synthesis, Analysis and Design, 3rd Edition, Hoboken, NJ , John Wiley, c2009
[47] Y. C. Wu, I.L. Chien, Design and Control of Heterogeneous Azeotropic Column System for the Separation of Pyridine and Water, Ind. Eng. Chem. Res. , 2009, 48, 10564–10576
[48] J. H. Lv, G. M. Xiao, Dehydration of water pyridine mixtures by pervaporation using cellulose acetate polyacrylonitrile blend membranes, Water Science & Technology, 2011, 63, 1695-1700
[49] J. Lv, G Xiao, Ultrasound Assisted Pervaporation Separation of Pyridine Water Mixtures Using Poly vinyl alcohol Polyacrylonitrile Blend Membranes, Chem. Eng. Technol. , 2010, 33, No. 12, 2051-2058
[50] B. K. Oh, W. J. Wang, Y. M. Lee,Pervaporation of pyridine-water mixture through poly(acrylonitrile-co-4styrene sulfonic acid) membrane , J. Appl. Polym. Sci. , 1996, 59, 227-233
[51]C. H. Park, S.Y. Nam, Y.M. Lee, Pervaporation of pyridine –water mixture through poly(acrylonitrile-co-monoacryloxyethyl phosphate) membrane, J. Membrane Science, 2000, 164, 121-128
[52] H. A. Xie, Q. T. Nguyen, P. Schaetzel, J. Neel, Dehydration of amines and diamines by pervaporation with ionomer and PVA-based membranes, J. Membr. Sci. , 1993, 81, 97-108
[53] E. Drioli, S. Zhang, A. Basile, On the coupling effect in pervaporation, J. Membr. Sci. , 1993, 81, 43-55
[54] Oh and Lee. Effects of functional group and operating temperature on the separation of pyridine-water mixture by pervaporation, J. Membrane Science, 1996, 113, 183-189
[55] C. H. Park, S. Y. Nam, Y. M. Lee, Pervaporation separation of an Aqueous Organic Mixture Through a Poly(acrylonitrile-co-vinyphosphonic acid) membrane, J. Appl. Polym. Sci. , 1999, 74, 83-89
[56] S. Arifin, I L. Chien, Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer., Ind. Eng. Chem. Res. , 2008, 47, 790-803
[57] T.S. Chung, X. Hu, The effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollowfibers, J. Appl. Polym. Sci. , 1997, 66
[58] T.S. Chung, S.K. Teoh, X. Hu, Formation of ultrathin high performance polyethersulfone hollow-fiber membranes, J. Membr. Sci., 1997, 133
[59] W. Zhang,G.W. Li,Y.J. Fang, X.P.Wang, Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance, J. Membr. Sci., 2007, 295
[60] Y.M. Lee, S.Y. Nam, D.J.Woo, Pervaporation of ionically surface crosslinked chitosan composite membranes for water–alcohol mixtures, J. Membr. Sci. , 1997, 133
[61] R.Y.M. Huang, R. Pal, G.Y. Moon, Crosslinked chitosan composite membrane for the pervaporation dehydration of alcohol mixtures and enhancement of structural stability of chitosan/polysulfone composite membranes, J. Membr. Sci. , 1999, 160
[62] A. Svang-Ariyaskul, R.Y.M. Huang, P.L. Douglas, R. Pal, X. Feng, P. Chen, L. Liu, Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol, J. Membr. Sci. , 2006, 280
[63] K. Rao, M.C.S. Subha, M. Sairam, N.N. Mallikarjuna, T.M. Aminabhavi, Blend membranes of chitosan and poly(vinyl alcohol) in pervaporation dehydration of isopropanol and tetrahydrofuran, J. Appl. Polym. Sci. , 2007, 103
[64] Y.L. Liu, C.H. Yu, K.R. Lee, J.Y. Lai, Chitosan/poly(tetrafluoroethylene) composite membranes using in pervaporation dehydration processes, J. Membr. Sci. , 2007, 287
[65] X. Qiao, T.S. Chung, K.P. Pramoda, Fabrication and characterization of BTDATDI/ MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol, J. Membr. Sci. , 2005, 264, 176–189
[66] X. Qiao, T.S. Chung, Diamine modification of P84 polyimide membranes for pervaporation dehydration of isopropanol, AIChE J. , 2006, 52, 3462-3472
[67] M.D. Kurkuri, U.S. Toti, T.M. Aminabhavi, Syntheses and characterization of blend membranes of sodium alginate and poly(vinyl alcohol) for the pervaporation separation ofwater + isopropanol mixtures, J. Appl. Polym. Sci. ,2002, 86
[68] Y.Q. Dong, L. Zhang, J.N. Shen, M.Y. Song, H.L. Chen, Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures, Desalination, 2006, 193, 202–210
[69] Y. Moo Lee, S. Yong Nam, S. Yong Ha, Pervaporation of water/isopropanol mixtures through polyaniline membranes dopedwith poly(acrylic acid), J. Membr. Sci. , 1999, 159
[70] Douglas, J. M., Conceptual Design of Chemical Process, McGraw-Hill, New York, 1988
[71] Turton, R., Bailie, R.C., Whiting, W. B., Shaelwitz, J. A. Analysis, Synthesis and Design of Chemical Process, 2nd Edition, Prentice Hall, Englewood Cliffs, NJ, 2003
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56531-
dc.description.abstract滲透蒸發具有節能、不用添加第三化學物質等好處,本研究探討其應用於複合式薄膜蒸餾系統之表現,並使用Aspen Plus進行模擬。
本研究分為兩大部分,其一,以複合式薄膜蒸發製程分離嘧啶(Pyridine)-水系統,並與以甲苯作為共沸劑之非均勻相共沸蒸餾,分為以總熱負載及年度總成本(TAC為目標函數作為比較。發現複合式薄膜蒸發系統應用在低共沸組成的嘧啶-水系統中,需要大量的昂貴薄膜,因此在經濟效應上並沒有其優勢。
其二,,以複合式薄膜蒸發製程分離異丙醇(IPA)-水系統,並與以dimethyl sulfoxide (DMSO)為萃取劑之萃取蒸餾系統,以IPA規格為99.9 mol%,目標函數為TAC做討論。由於IPA-水系統中共沸組成較高,因此除了原本設計程序外,也討論了使用薄膜系統直接達到所欲規格之可能性。結果顯示在規格為99.9mol%時,可使用較少薄膜即達到規格,但兩種不同的設計流程與DMSO為萃取計之萃取蒸餾系統相比,並無經濟優勢。
zh_TW
dc.description.abstractPervaporation separation process can not only save the required energy but also not need a third component used in separation. This research discuss about the application of pervaporation using in hybrid distillation-membrane system and use Aspen plus to simulate the process.
This research is divided into two part: first part is using hybrid distillation-membrane system to separate pyridine and water. Compare the process to heterogeneous azeotropic distillation using toluene as entrainer by using the total duty and total annual cost as objective function. We can find that it needs a lot of expensive membranes in series to separate the low azeotrope by hybrid distillation-membrane system which makes it not economically compatible.
The second study is about the separation of isopropyl alcohol(IPA) by hybrid distillation-membrane system. Then, compare it with the extractive distillation by dimethyl sulfoxide (DMSO) as an extractant. The design spec of IPA is 99.9mol%. Despite of the original flow sheet design, IPA-water system can be separated by a stripper and membranes in series due to the high composition of the azeotrope. It shows that only need few membranes to achieve 99.9mol%. However, the hybrid system shows less economically compatible comparing to the extractive distillation due to the expensive membrane module.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:33:19Z (GMT). No. of bitstreams: 1
ntu-103-R01524086-1.pdf: 1918165 bytes, checksum: a9f860b89c4a16ba257c11fe4e93d455 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝……………………………………………………………………………………I
中文摘要………………………………………………………………………………III
Abstract…………………………………………...……………………………………V
目錄………………………………………………………………………………VII
圖目錄………………………………………………………………………………IX
表目錄………………………………………………………………………………XII
1. 緒論………………………………………………………………………………1
1.1 前言…………………………………………………………………………1
1.2 文獻回顧…………………………………………………………….………4
1.2.1 滲透蒸發之介紹………………………………………….…….…4
1.2.2 複合式薄膜蒸餾製程……………………………………………..6
1.2.3 內部回流(Internal recycle) ……………………………………….8
1.3 傳統分離方法之介紹………………………………………….…………….9
1.3.1 萃取蒸餾(Extractive distillation) ………………………………...9
1.3.2 變壓蒸餾(Pressure swing distillation) …………………………..10
1.3.3 共沸蒸餾( Azeotropic distillation)………………………………11
1.4 研究動機………………………………………….………………………...13
1.5 組織架構………………………………………….………………………...14
2. 熱力學模式及薄膜模型之建立………………………………………….……...15
2.1 前言………………………………………….……………………………...15
2.2 熱力學模式建立與參數………………………………………….………...15
2.3 蒸餘曲線………………………………………….………………………...20
2.4 薄膜模型………………………………………….………………………...23
2.4.1 薄膜模型介紹………………………………………….………...23
2.4.2 薄膜模型之建立………………………………………….……...24
2.4.3 內部回流………………………………………….……………...28
2.5 薄膜價格討論 ………………………………………….……………32
3. 嘧啶與水系統之程序模擬………………………………………….…………...34
3.1 前言………………………………………….……………………………...34
3.2 傳統共沸蒸餾法………………………………………….………………...35
3.2.1 以總熱負載為目標函數…………………………………………35
3.2.2 以年度總成本為目標函數………………………………………38
3.3 複合式薄膜蒸餾系統………………………………………………………46
3.3.1 薄膜選擇…………………………………………………………46
3.3.2 以總熱負載為目標函數…………………………………………49
3.3.2.1 無內部回流…………………………………………………...49
3.3.2.2 有內部回流…………………………………………………...52
3.3.3 以年度總成本為目標函數………………………………………64
3.3.3.1 無內部回流…………………………………………………...64
3.3.3.2 有內部回流…………………………………………………...67
3.4 結果與討論…………………………………………………………………74
4. 異丙醇與水系統之程序模擬……………………………………………………75
4.1 前言…………………………………………………………………………75
4.2 萃取蒸餾……………………………………………………………………75
4.3 複合式薄膜蒸發製程………………………………………………………80
4.3.1 薄膜選擇…………………………………………………………80
4.3.2 Design A………………………………………………………….82
4.3.2.1 無內部回流…………………………………………………...82
4.3.2.2 有內部回流…………………………………………………...85
4.3.3 Design B …………………………………………………………88
4.3.3.1 無內部回流…………………………………………………...88
4.3.3.2 有內部回流…………………………………………………...94
4.4 結果與討論…………………………………………………………………98
5. 結論………………………………………………………………………………99
參考文獻……………………………………………………………………………..101
附錄…………………………………………………………………………………..108
A 年總成本計算公式……………………………………………………………….108
dc.language.isozh-TW
dc.subject複合式薄膜蒸餾zh_TW
dc.subject滲透蒸發zh_TW
dc.subject共沸物zh_TW
dc.subject嘧啶zh_TW
dc.subjectazeotropeen
dc.subjectHybrid Distillation-Membraneen
dc.subjectpervaporationen
dc.subjectpyridineen
dc.title複合式薄膜蒸餾製程在各類共沸物分離製程之應用zh_TW
dc.titleApplication of Hybrid Distillation-Membrane Process in
Separations of Various Azeotropic Systems
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭西顯,汪上曉,陳誠亮(Cheng-Liang Chen)
dc.subject.keyword複合式薄膜蒸餾,滲透蒸發,共沸物,嘧啶,zh_TW
dc.subject.keywordHybrid Distillation-Membrane,pervaporation,azeotrope,pyridine,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved