請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56524完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 杜宜殷(Yi-Yin Do) | |
| dc.contributor.author | Po-Heng Chen | en |
| dc.contributor.author | 陳柏亨 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:32:57Z | - |
| dc.date.available | 2019-09-04 | |
| dc.date.copyright | 2014-09-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-13 | |
| dc.identifier.citation | 王小榮、劉選明、劉斌. 2003. 不同激素組合對苦瓜離體快速繁殖的調控. 湖南師範大學自科學學報 26:76-78。
王毓華、林子凱、林照能. 2011. 農業環境變遷對葫蘆科蔬菜育種與栽培技術之挑戰. 因應氣候變遷作物育種及生產環境管理研討會專刊 153-161. 江筱慧. 2008.苦瓜質脂結合蛋白cDNA 之選殖與分析. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 吳鳳儀、許秀惠、黃秋雄. 1994. 台灣瓜類作物之病毒. 瓜類作物保護技術研討會專刊 159-167. 陳君琳. 2012. 苦瓜質脂結合蛋白基因McPAP1之功能分析. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 項千芸、侯庭鏞、陳兆群、羅欣宜、吳世祿、陳清助. 2008. 苦瓜蛋白調整血糖機制及其應用之研究. 苦瓜產業與保健功效研討會刊 89-104. 賈儒珍. 2005. 苦瓜性別表現相關蛋白質之研究. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 游沐慈. 2010. 苦瓜質脂結合蛋白McPAP1之功能分析及蛋白質定位. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 黃祥益. 2010苦瓜栽培管理技術. 行政院農委會高雄區農業改良場編印. 高雄區農技報導 105. 黃勇、湯清林、宋明. 2007. 苦瓜組織培養體系的研究. 西南農業學報. 4:860-863. 楊滿業、趙茂俊、徐鶯、唐琳、白洁、陳放. 2004. 苦瓜MADS盒基因的克隆和表達研究. 北京大學學報 26:30-34. 劉政道、李碩朋. 1995. 苦瓜. 台灣農家要覽農作篇 (二). 豐年社. 台北. 關春梅、張憲省. 2006. 植物離體器官發生控制機理研究進展. 植物學通報 23:595-602. Agarwal, M., and Raka Kamal. 2004. In vitro clonal propagation of Momordica charantia L. Indian J. Biotechnol. 3:426-430. Ahsan, N., S. H. Lee, D. G. Lee, M. Anisuzzaman, M. F. Alam, H. S. Yoon, M. S. Choi, J. K. Yang, and B. H. Lee. 2007. The effects of wounding type, preculture, infection methods and cocultivation temperature on the Agrobacterium-mediated gene transfer in tomatoes. Ann. Appl. Biol. 151:363-372. Austin II, J. R., E. Frost, P. A. Vidi, F. K, and L. A. Staehelin. 2006. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693-1703. Bakshi, S., A. Sadhukhan, S. Mishra, L. Sahoo. 2011. Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltrantion. Plant Cell Rep. 30:2281-2292. Bastos de Almeida, W. A. B.., F. de A. A. M. Filho, B. M. J. Mendes. A. Pavan, and A. P. M. Rodriguez. 2003. Agrobacterium-mediated transformation of Citrus sinensis and Citrus limonia epicotyl segments. Sci. Agri. 60:23-29. Bellafiore, S., F. Barneche, G. Peltier, and J. D. Rochaix. 2005. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892-893. Bre’he’lin, C., and F. Kessler. 2008. The plastoglobule: A bag full of lipid biochemistry Tricks. Photochem. Photobio. 84: 1388-1394. Chrominski, A. and J. Kopcewicz. 1972. Auxins and gibberellins in 2-chloroethylphosphonic acid-induced femaleness of Cucurbita pepo L. Zeitschrift fur pflanzenphysiologie 68:184-189. Chen, J. T., C. Chang, and W. C. Chang. 1999. Direct somatic embryogenesis on leaf explants of Oncidium Grower Ramsey and subsequent plant regeneration. Plant Cell Rep. 19:143-149. Clark, K. L., P. B. Larsen, X. Wang, and C. Chang. 1998. Association of Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc. Natl. Acad. Sci. USA. 95:5401-5406. Clough, G. H. and P. B. Hamm. 1995. Coat protein transgenic resistance to watermelon mosaic and zucchini yellow mosaic virus in squash and cantaloupe. Plant Dis. 79:1107-1109. Crossway, A., J. V. Oakes, J. M. Irvine, B. Ward, V. C. Knauf, and C. K. Shewmaker. 1986. Integration of foreign DNA following microinjection of tobacco mesophyll protoplast. Mol. Genet. Genomics 202:179-185. Dagan, Y. L., M. Ovadis, E. Shklarman, Y. Elad, D. Rav, and A. Vainstein. 2006. Expression and functional analyses of the plastid lipid-associated protein CHRC suggest it’s role in chromoplastogenesis and stress . Plant Physiol. 142: 233-244. Daniell, H., S. B. Lee, T. Panchal, and P. O. Wiebe. 2001. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 311:1001-1009. De Block, M., L. Herrera-Estrella, M. Van Montagu, J. Schell, and P. Zambryski. 1984. Expression of foreign genes in regenerated plants and their progeny. Embo J. 3:1681-1689. Deruѐre, J., S. Rӧmer, A. ďHarlingue, R. A. Backhaus, M. Kuntz, and B. Camara. 1994. Fibril assembly and carotenoid overaccumulation in chromoplasts a model for supramolecular lipoprotein structure. Ame. Soc. Plant Physiol. 6:119-133. Dutt, M, and J. W. Grosser. 2009. Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell Tissue Organ Cult. 98:331-340. Fromm, M. E., L. P. Taylor, and V. Walbot. 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319:791-793. Gaba, V., A. Zelcer, and A. G. On. 2004. Invited review: Cucumber biotechnology-The importance of virus resistance. In vitro Cell. Dev. Biol.-Plant 40:346-358. Gal-On, A., D. Wolf, Y. Antignus, L. Patlis, K. H. Ryu, B. E. Min, M. Pearlsman, O. Lachman, V. Gaba, Y. Wang, Y. M. Shiboleth, J. Yang, and A. Zelcer. 2005. Transgenic cucumbers harboring the 54-KDa putative gene of cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Res. 14:81-93. Gaude, N., C. Brѐhѐ lin, G. Tischendorf, F. Kessler, and P. Dӧ rmann. 2007. Nitrogen deficiency in Arabidopsis affects galactolipid compositon and gene expression and results in accumulation of fatty acid phytyl esters. Plant J. 49:729-739. Gelvin, S. B. 2013. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. 67:16-37. Ghani, M. A., M. Amjad, Q. Iqbal, A. Nawaz, T. Ahmad, Q. B. A. Hafeez, and M. Abbas. 2013. Efficiency of plant growth regulators on sex expression, earliness and yield components in bitter gorud. Pak. J. life Soc. Sci. 11:218-224. Golds, T., P. Mallga, and H. U. Koop. 1993. Stable plastid transformation in PEG treated protoplasts of Nicotiana tabacum. Bio/Technology 11:95-97. Grag, W. M., S. Kepinski, D. Rouse, O. Leyser, and M. Estelle. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271-276. Greenwood, A. D., R. M. Leech, and J. P. Williams. 1963. The osmiophilic globules of chloroplasts. I. Osmiophilic globules as a normal component of chloroplasts and their isolation and composition in Vicia faba L. Biochem. Biophys. Acta 78:148-162. Guocun, H., D. Yuemei, and S. Jingsan. 1999. Introduction of exogenous DNA into cotton via the pollen tube pathway with GFP as a reporter. Chinese Sci. Bulletin 44:698-701. Hazra, S., S. S. Sathaye, and A. F. Mascarenhas. 1989. Direct somatic embryogenesis in peanut (Arachis hypogea). Nature 7:949-951. Hernandez-Pinzon, I., J. H. E. Ross, K. A. Barnes, A. P. Damant, and D. J. Murphy. 1999. Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of brassica napus. Planta 208:588-598. Hoekema, A., P. R. Hirsch, P. J. J. Hookaas, and R. A. Schilperoort. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179-180. Hӧrtensteiner S, and B. Krautler. 2011. Chlorophyll breakdown in higher plants. Biochem. Biophys. Acta 1807: 977–988. Iwahori, S., J. M. Lyons, and O. E. Smith. 1970. Sex expression in cucumber plants as affected by 2-chloroethylphosphonic acid, ethylene and growth regulators. Plant Physiol. 46:412-415. Jakowitsch, J., M. F. Mette, J. van der Winder, M. A. Matzke, and A. J. Matzke. 1999. Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proc. Natl. Acad. Sci. USA. 96:13241-13246. Kang, B. G., W. Newcomb, and S. P. Burg. 1970. Mechanism of Auxin-induced ethylene production. Plant Physiol. 47:504-509. Khan, M. M. A., A. B. M. A. H. K. Robin, M. A. N. Nazim-Ud-Dwola, S. K. Talukder, and L. Hassan. 2009. Agrobacterium-mediated genetic transformation of tow varieties of brassica: Optimization of protocol. Bangladesh J. Agri. Res. 34:287-301. Knopf, R. R. and T. Trebitsh. 2006. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell physiol. 47:1217-1228. Jilka, C., B. Strifler, G. W. Fortner, E. F. Hays, and D. J. Takenoto. 1983. In vivo antitumor activity of the bitter melon (Momordica charantia). Cancer Res. 43:5151-5155. Knutz, M., H. C. Chen, A. J. Simkin, S. Romer, C. A. Shipton, R. Drake, W. Schuch, and P. M. Bramley. 1998. Upregulation of two ripening-related genes from a non-climateric plant (pepper) in a transgenic climacteric plant (tomato). Plant J. 13: 351-361. Komari, T., Y. Hiei, Y. Saito, N. Murai, and T. Kumashiro. 1996. Transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10:165-174. Langenkamper, G., N. Manach, M. Broin, S. Cuine, N. Becuwe, M. Kuntz, and P. Rey. 2001. Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J. Exp. Bot. 52: 1545-1554. Lee, H. S., E. J. Kwon, S. Y. Kwon, Y. J. Jeong, E. M. Lee, M. H. Jo, H. S. Kim, I. S. Woo, A. Shinmyo, K. Yoshida, and S. S. Kwak. 2003. Transgenic cucumber fruits that produce elevated level of an anti-aging superoxide dismutase. Mol. Breed 11:213-220 Li, Z., S. Huang, S. Liu, J. Pan, Z. Zhang, Q. Tao, Q. Shi, Z. Jia, W. Zhang, H. Chen, L. Si, L. Zhu, and R. Cai. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381-1385. Lincy, A. K., A. B. Remashree, and B. Sasikumar. 2009. Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc.). Acta Bot. Croat. 68:93-103. Liu, Z., B. J. Park, A. Kanno, and T. Kameya. 2005. The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol. Breeding 16:189-197. Lundquist, P. K., A. Poliakov, N. H. Bhuiyan, B. Zybailov, Q. Sun, and K. J. V. Wijk. 2012. The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physio. 158:1172-1192. Malik, S., M. Zia, R. U. Rehman, and M. F. Chaudhary. 2007. In vitro plant regeneration from direct and indirect organogenesis of Momordica charantia. Pakistan J. Biol. Sci. 10:4118-4122. Mariashibu, T. S., K. Subramanyam, M. Arun, S. Mayavan, M. Rajesh, J. Theboral, M. Manickavasagam, and A. Ganapathi. 2013. Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta. Phyisol. Plant. 35:41-54. Mathur, J. and Koncz, C. 1997. PEG-mediated protoplast transformation with naked DNA. Meth Mol. Biol. 82:267-276. Mia, MA. Baset., MS. Islam, and ZH. Shamsuddin. 2014. Altered sex expression by plant growth regulators: An overview in medicinal vegetable bitter gourd (Momordica charantia L.). J. Med. Plant Res. 8:361-367. Monte, E., D. Ludevid, and S. Prat. 1999. Leaf C40.4: a carotenoid-associated protein involved in the modulation of photosynthetic efficiency?. The Plant J. 19(4): 399-410. Murashige, T, and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497. Nanasato, Y., K. I. Konagaya, A. Okuzaki, M. Tsuda, and Y. Tabei. 2013. Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnol. Rep. 7:267-276. Pierce, L. K. and T. C. Wehner. 1990. Review of genes and linkage groups in cucumber. HortScience 25:605-15. Pike, L. M. and C. E. Peterson. 1969. Gibberellin A4/A7 for induction of staminate flowers on the gynoecious cucumber (Cucumis sativus L.). Euphytica 18:106-109. Qi, X. H., X. W. Xu, X. J. Lin, W. J. Zhang, and X. H. Chen. 2012. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99:160-168. Rey, P., B. Gillet, S. Romer, F. Eymery, J. Massimino, G. Peltier, and M. Kuntz. 2000. Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress. Plant J. 21: 483-494. Rudich, J., A. H. Halevy, and N. Kedar. 1972. The level of phytohormone in monoecious and gynoecious cucumbers as affected by photoperiod and ethephon, Plant Physiol. 50:585-590. Saika, H. and S. Toki. 2010. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep. 29:1351-1364. Selvaraj,N., S. Kasthurirengan, A. Vasudeva, M. Manickaasagam, C. W. Choi, and A. Ganapathi. 2010. Evaluation of green fluorescent protein as a reporter gene and phosphinothricin as the selective agent for achieving a higher recovery of transformants in cucumber (Cucumis sativus L. cv. Poinsett76) via Agrobacterium tumefaciens. In Vitro Cell Dev. Biol. Plant 46:329-337. Shillito, R. D., M. W. Saul, J. Paszkowski, M. Muller, and I. Potryus. 1985. High efficiency direct gene transfer to plants. Nature 3:1099-1103. Sikdar, B., M. Shafiullah, A. R. Chowdhury, N. Sharmin, S. Nahar, and O.I. Joarder. 2005. Agrobacterium-mediated GUS expression in bitter gourd (Momordica charantia L.). Biotechnology. 149:149-152. Simkin, A. J., J. Gaffe, J. P. Carde, P. M. Bramley, P. D. Fraser, and M. Kuntz. 2007. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68:1545-1556. Singh, D. K., S. N. Maximova, P. J. Jensen, B. L. Lehman, H. K. Ngugi, and T. W. McNellis. 2010. FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant physiol. 154:1281-1293. Singh, D. K., and T. W. Mcnellis. 2011. Fibrillin protein function: the tip of the iceberg? Trends Plant Sci. 16:432-441. Skoog, F. and M. Co. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Sym. Soc. Exp. Biol. 11:118-131. Smith, M. K. and R. A. Drew. 1990. Current applications of tissue culture in plant propagation and improvement. Aust. J. Plant Physiol. 17: 189-267. Song, S., H. Huang, H. Liu, G. Sun, and R. Chen. 2012. Low temperature during seedling stage promotes female flower determination but not yield of Chieh-qua. Hort. Envrion. Biotechnol. 53:343-348. Song, X., Y. Gu, and G. Qin. 2007. Application of a transformation method via the pollen pathway in agriculture molecular breeding. Life Sci. J. 4:77-79. Subramanyam, K., K. Subramanyam, K. V. Sailaja, M. Srinivasulu, K. Lakshmidevi. 2011. Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (ABA) via sonication and vacuum infiltration. Plant Cell Rep. 30:425-436. Sugie, A., N. Naydenov, N. Mizuno, C. Nakamura, and S. Takumi. 2006. Overexpression of wheat alternative oxidase gene Waoxla alters respiration capacity and response to rective oxygen species under low temperature in transgenic Arabidopsis. Genes Genet. Syst. 81:349-354. Sultana, R. S. and M. A. Bai Miah. 2003. In vitro propagation of Karalla (Momordica charantea Linn.) from nodal segment and shoot tip. J. Biol. Sci. 3:1134-1139. Sultana, R. S., and M. M. Rahman. 2012. Cells structure and morphogenesis of embryogenic aggregates in suspension culture of bitter melon (Momordica charantia L.). Inter J. Bioscien. 2:97-105. Sunilkumar, G. and K. S. Rathore. 2001. Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol. Breed 8:37-52. Tabassum, B., I. A. Nasir, A. M. Farooq, Z. Rehman, Z. Latif and T. Husnain. 2010. Viability assessment of in vitro produced synthetic seeds of cucumber. African J. Biotech. 9:7026-7032. Tabassum, B., I. A. Nasir, A. M. Farooq, Z. Rehman, Z. Latif and T. Husnain. 2010. Viability assessment of in vitro produced synthetic seeds of cucumber. African J. Biotech. 9:7026-7032. Thiruvengadam, M., J. Jeyakumar, M. Kamaraj, I. M. Chung, and J. J. Kim. 2013. Optimization of Agrobacterium-mediated genetic transformation in gherkin (Cucumis anguria L.). Plant Omics 6:231-239. Thiruvengadam, M., N. Praveen, and I. M. Chung. 2012. An efficient Agrobacterium tumefaciens mediated genetic transformation of bitter melon (Momordica charantia L.). Aust J. Crop Sci. 6:1094-1100. Thiruvengadam, M., N. Praveen, and I. M. Chung. 2012. In vitro regeneration from intermodal explants of bitter melon (Momordica charantia L.) via indirect organogenesis. African J. Biotechnol. 11:8218-8244. Trick, H. N. and J. J. Finer. 1997. SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res. 6:329-336. Unni, S. C. and E. V. Soniya. 2010. Transgenic Cucumis sativus expressing the hepatitis B surface antigen. Plant Mol. Biol. Rep. 28:627-634. Uranbey, S., C. S. Sevimay, M. D. Kaya, A. Ipek, C. Sancak, D. BaŞalma, C. ER, and S. Ozcan. 2005. Influence of different co-cultivation temperatures, periods and media on Agrobacterium tumefaciens-mediated gene transfer. Biol. Plant. 49:53-57. Vasudevan, A., N. Selvaraj, A. Ganapathi, and C. W. Choi. 2007. Agrobacterium-mediated genetic transformation in Cucumber (Cucumis sativus L.). American J. of Biotechol. Biochem. 3:24-32. Vengadesan, G., R. P. Anand, N. Selvaraj, R. P. Treves and A. Ganapathi. 2005. Transfer and expression of nptII and bar genes in cucumber (Cucumis sativus L.). In vitro Cell Dev. Biol. Plant. 41:17-21. Vidi, P. A., M. Kanwischer, S. Baginsky, J. R. Ausin, G. Csucs, P. Do‥rmann, F. Kessler, and C. Bre’he’ lin. 2006. Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. Bio. Chem. J. 281:11225-11234. Wang, Y. C., T. M. Klein, M. Fromm, J. Cao, J. C. Sanford, and R. Wu. 1988. Transient expression of foreign genes in rice, wheat, and soybean cells following particle bombardment. Plant Mol. Bio. 11:433-439. Yamasaki, S., N. Fujii. and H. Takahashi. 2003. Characterization of ethylene effects on sex determination in cucumber plants. Sex Plant Rep. 16:103-111. Yamasaki, S., N. Fujii. and H. Takahashi. 2003. Photoperiodic regulation of CS-ACS2, CS-ACS4 and CS-ERS gene expression contributes to the femaleness of cucumber flowers through diurnal ethylene production under short-day condition. Plant Cell Environ. 26:537-546. Yechan, L., P. Dominique, M. Re’gis, and K. Marcel. 2004. Subfamily organization and phylogenetic origin of genes encoding plastid lipid associated protein of the fibrillin type. J. Genome Sci. Technol. 3:19-28. Youssef, A., Y. Laizet, M. A. Block, E. Marechal, J. P. Alcaraz, T. R. Larson, D. Pontier, J. Gaffe, and M. Kuntz. 2010. Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J. 61: 436-445. Ytterberg, A. J., J. B. Peltier, and K. J. V. Wijk. 2006. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol. 140:984-997. Zia, M. Z. F. Rizvi, R. U. Rehan, and M. F. Chaudhary. 2010. Agrobacterium mediated transformation of soybean (Glycine max L.): some conditions standardization. Pak. J. Bot. 42:2269-2279. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56524 | - |
| dc.description.abstract | 為了瞭解苦瓜 (Momordica charantia L.) 質脂結合蛋白 (plastid lipid-associated protein, PAP) McPAP1基因之功能,將McPAP1基因之過量表現質體轉殖至胡瓜 (Cucumis sativus L.) 及苦瓜 (Momordica charantia L.) 。於胡瓜轉殖株之驗證方面,經選取具有GUS活性反應之擬轉殖株,進行聚合酶連鎖反應 (polymerase chain reaction, PCR) 分析,可偵測到報導基因GUS及McPAP1目標基因,確認為轉殖株。進一步以反轉錄聚合酶連鎖反應 (reverse transcription PCR, RT-PCR)偵測轉殖株內McPAP1基因表現情形,顯示McPAP1基因能夠於轉殖株中進行穩定表現。為了瞭解過量表現McPAP1對轉殖胡瓜中花性相關基因表現之影響,針對PAP、ACS 合成酶ACS2、Aux/IAA轉錄因子基因IAA2、乙烯受體相關基因ETR1及逆境相關氧化酶基因AOX2之表現量,以即時定量RT-PCR (real-time quantitive RT-PCR) 進行分析,結果顯示,PAP 之 RNA 累積量高的植株中,IAA2的表現較高,ACS2及AOX2表現量則較低,ETR1表現量皆高於未轉殖株,但與所檢測之其他基因表現類型皆不相同。檢測轉殖株之開花習性,過量表現McPAP1基因造成植株出現雌花之節位提早。以苦瓜葉片作為培植體,培養於添加0.5 mg.L-1 NAA及2 mg.L-1 TDZ之MSB5 培養基,具較高之癒傷組織誘導效率。葉片培植體經過3天之預培養,使用培養至OD600 0.8之農桿菌,與葉片培植體經超音波震盪5秒,再於添加100 μΜ 乙醯丁香酮之培養基中,感染30分鐘,接著共培養72小時後,以添加200 mg.L-1 kanamycin之癒傷組織誘導培養基進行篩選。葉片培植體經轉殖90天後生成之癒傷組織,經GUS活性組織化學染色分析,呈藍色反應。 | zh_TW |
| dc.description.abstract | To understand the function of plastid lipid-associated protein McPAP1 gene of bitter gourd, plasmid construct of McPAP1 gene overexpression was transformed into the monoecious plants such as Cucumis sativus and Momordica charantia. The putative transgenic cucumber plants after GUS histochemical assay, were analysed by and both polymerase chain reaction (PCR) and both reporter gene GUS and target gene McPAP1 were detectable. Gene expression of McPAPA1 gene was confirmed by reverse-transcription PCR (RT-PCR). Real-time quantitive RT-PCR were performed to realize the effect of overexpression McPAP1 in transgenic cucumber on expression of several flower sex-related genes, such as ACC synthase gene ACS2, Aux/IAA transcription factor gene IAA2, ethylene receptor gene ETR1 and stress-induced alternative oxidase gene AOX2. High expression level of PAP was consisted of high expression of IAA2 , but in contrast with ACS2 and AOX2. The expression pattern of ETR1was totally different with others gene. The appearance of female flowers was earlier in cucumber overexpression lines than untransformant. On the other hand calli were induced from leaf disc of bitter gourd on MSB5 medium with 0.5 mg.L-1 NAA and 2 mg.L-1 TDZ. Agrobacterium strain LBA4404 harboring McPAP1 gene overexpression vector was used for Agrobacterium-mediated gene transformation using leaf disc of bitter gourd as explant. Explants were pre-cultured for three days and then treated by sonication 5 sec with Agrobacterium solution achieved OD600 0.8. Infection was performed in medium with 100 μΜ acetosyringone for 30 min and then co-culturing for 3 days. Finally, transformed leaf discs were selected on the medium with 200 mg.L-1 kanamycin. GUS activity was detected in survival calli after transformation ninety days.
Key words: Gene overexpression, flower sexuality, plant genetic transformation | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:32:57Z (GMT). No. of bitstreams: 1 ntu-103-R01628116-1.pdf: 5458169 bytes, checksum: 57f21d049845a1abed7c3e6eb5b99055 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 壹、 前言 1
貳、 前人研究 2 一、 質體小球之介紹 2 (一) 質體小球結構 2 (二) 質體小球內含物質 2 (三) 質體小球之功能 2 二、 質脂結合蛋白 4 (一) 質脂結合蛋白之介紹 4 (二) 蛋白分布位置 4 (三) 蛋白功能的探討 6 三、 苦瓜質脂結合蛋白MCPAP1之介紹 6 (一) 苦瓜不同花器的發育期 6 (二) 苦瓜花性相關蛋白質及其選殖 7 (三) McPAP1基因啟動子分析 7 (四) McPAP1 蛋白功能分析 8 四 胡瓜及苦瓜花性決定相關研究 8 (一) 影響胡瓜花性之植物荷爾蒙及環境因子 9 (二) 影響胡瓜花性之遺傳因子 9 (三) 影響苦瓜花性之植物荷爾蒙及環境因子 10 (四) 影響苦瓜花性之遺傳因子 10 五 苦瓜組培再生系統 11 (一) 器官發生(organogenesis) 11 (二) 體胚發生 (somatic embryogenesis) 12 六 瓜類作物再生系統及轉殖系統 13 (一) 直接基因轉殖法 13 (二) 間接基因轉殖 14 (三) 影響農桿菌基因轉殖效率之因子 14 (四) 基因轉殖於瓜類作物之應用 16 參、 材料方法 17 一、 試驗材料 17 (一) 質體材料 17 (二) 試驗菌種 17 (三) 植物材料 17 二、 試驗方法 19 (一) 苦瓜再生系統 19 (二) 苦瓜基因轉殖系統 22 (三) 胡瓜轉殖株分析 23 肆、 結果 30 一、 胡瓜轉殖株之驗證 30 二、 胡瓜轉殖株QRT-PCR分析及外表型態之比較 30 三、 苦瓜再生系統之建立 31 四、 苦瓜基因轉殖系統之建立 32 (一) 抗生素天然抗性試驗 32 (二) 苦瓜農桿菌導入法之基因轉殖 32 伍、 討論 33 一、 花性相關基因之表現 33 二、 MCPAP1過量表現轉殖株外表形態分析 34 三、 苦瓜再生系統之建立 34 (一) 苦瓜癒傷組織誘導培養基測試 34 (二) 苦瓜不同部位癒傷組織誘導試驗 35 四、 苦瓜轉殖系統之建立 35 (一) 抗生素天然抗性試驗 35 (二) 農桿菌基因轉殖 35 陸、 結語 38 參考文獻 63 附錄…… 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 植物基因轉殖 | zh_TW |
| dc.subject | 基因過量表現 | zh_TW |
| dc.subject | 花性 | zh_TW |
| dc.subject | plant genetic transformation | en |
| dc.subject | Gene overexpression | en |
| dc.subject | flower sexuality | en |
| dc.title | 胡瓜及苦瓜轉殖表達外源質脂結合蛋白基因之研究 | zh_TW |
| dc.title | Studies on Expression of Foreign Plastid-Lipid-Associated Protein Gene McPAP1 in Transgenic Cucumber (Cucumis sativus L.) and Bitter Gourd (Momordica charantia L.) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃鵬林(Pung-Ling Huang) | |
| dc.contributor.oralexamcommittee | 李昆達(Kung-Ta Lee),何錦玟(Chin-Wen Ho) | |
| dc.subject.keyword | 基因過量表現,花性,植物基因轉殖, | zh_TW |
| dc.subject.keyword | Gene overexpression,flower sexuality,plant genetic transformation, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
