Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56506
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川(Kuo-Chuan Ho)
dc.contributor.authorWan-Hsuan Chouen
dc.contributor.author周宛璇zh_TW
dc.date.accessioned2021-06-16T05:32:00Z-
dc.date.available2024-08-20
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation高分子膠態電解液,可望改善其長期操作之穩定性。

第八章 參考文獻
[1] 程金保, 游毓珈, 變色節能窗之應用簡介. 經濟部能源局:(能源與生活)(2006) 31.
[2] D. Corr, Coloured electrochromic “paper-quality” displays based on modified mesoporous electrodes. Solid State Ionics, 165:(1-4)(2003) 315-321.
[3] M. Gratzel, Ultrafast colour displays. Nature, 409 (2001) 575-576.
[4] U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, Nanomaterials-based electrochromics for paper-quality displays. Advanced Materials, 14 (2002) 845-848.
[5] C. M. Lampert, Smart switchable glazing for solar energy and daylight control. Solar Energy Materials and Solar Cells, 52 (1998) 207-221.
[6] C. M. Lampert, Chromogenic smart materials. Materials Today, 7:(3)(2004) 28-35.
[7] K. R. Lee and G. A. Sotzing, Color tuning of black for electrochromic polymers using precursor blends. Chemical Communications, 49:(45)(2013) 5192-5194.
[8] A. Azens, E. Avendano, J. Backholm, L. Berggren, G. Gustavsson, R. Karmhag, G. A. Niklasson, A. Roos, and C. G. Granqvist, Flexible foils with electrochromic coatings: science, technology and applications. Materials Science and Engineering: B, 119:(3)(2005) 214-223.
[9] 楊明長, 電致色變系統簡介. 化工, 40 (1993) 64-68.
[10] 黃肇瑞、王俊凱, 節能減碳又潔淨的居家環境. 科學發展, 445 (2010) 55-59.
[11] J. C. Brantley, E. O. Brimm, J. H. Lorenz, and M. H. Jellinek, Sodium and potasium tunsten bronzes. Journal of the American Chemical Society, 73:(11)(1951) 5427-5432.
[12] J. R. Platt, Electrochromism, a possible change of color productible in dyes by an electric field. The Journal of Chemical Physics, 34 (1961) 862-863.
[13] S. K. Deb, A Novel Electrophotographic System. Applied Optics 8:(S1)(1969) 192-195.
[14] C. Ma, M. Taya, and C. Xu, Smart sunglasses based on electrochromic polymers. Polymer Engineering and Science, 48:(11)(2008) 2224-2228.
[15] D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao, and D. Fitzmaurice, Ultrafast electrochromic windows based on redox-hromophore modified nanostructured semiconducting and conducting films. The Journal of Physical Chemistry B, 104 (2000) 11449-11459.
[16] P. R. Somani and S. Radhakrishnan, Electrochromic materials and devices: present and future Materials Chemistry and Physics, 77 (2003) 117-133.
[17] P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism and Electrochromic Devices. Cambridge University Press, Cambridge, (2007).
[18] P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications. VCH, Weinheim, Germany, (1995).
[19] B. W. Faughnan, R. S. Crandall, and P. M. Heyman, Electrochromism in tungsten (VI) oxide amorphous films. R.C.A. Review, 36 (1975) 177-197
[20] T. H. Chang, C. W. Hu, R. Vittal, and K. C. Ho, Incorporation of plastic crystal and transparent UV-cured polymeric electrolyte in a complementary electrochromic device. Solar Energy Materials and Solar Cells, 126 (2014) 213-218.
[21] F.  S. Han, M. Higuchi, and D. G. Kurth, Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials. Advanced Materials, 19:(22)(2007) 3928-3931.
[22] W. H. Chen, T. H. Chang, C. W. Hu, K. M. Ting, Y. C. Liao, and K. C. Ho, An electrochromic device composed of metallo-supramolecular polyelectrolyte containing Cu(I) and polyaniline-carbon nanotube. Solar Energy Materials and Solar Cells, 126 (2014) 219-226.
[23] C. L. Gaupp, D. M. Welsh, R. D. Rauh, and J. R. Reynolds, Composite coloration efficiency measurements of electrochromic polymers based on 3,4-alkylenedioxythiophenes. Chemistry of Materials, 14:(9)(2002) 3964-3970.
[24] R. D. Rauh, F. Wang, J. R. Reynolds, and D. L. Meeker, High coloration efficiency electrochromics and their application to multi-color devices. Electrochimica Acta, 46 (2001) 2023-2029.
[25] 黃玉仙, 含普魯士藍與六氰鐵化銦電致色變元件之性能與最適化研究. 國立台灣大學化學工程學研究所碩士論文, 台北, 台灣, (2002).
[26] 柯惠琪, 含聚苯胺之電致色變元件性質研究. 國立台灣大學化學工程學研究所碩士論文, 台北, 台灣, (2000).
[27] X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Solar Energy Materials and Solar Cells, 92:(6)(2008) 628-633.
[28] S. F. Cogan, N. M. Nguyen, S. J. Perrotti, and R. D. Rauh, Optical properties of electrochromic vanadium pentoxide. Journal of Applied Physics, 66:(3)(1989) 1333-1337.
[29] C. N. Polo da Fonseca, Macro-A. De Paoli, and A. Gorensiein, the electrochromic effect in cobalt oxide thin films. Advanced Materials, 3:(11)(2004) 553-555.
[30] R. D. Rauh, Electrochromic windows: an overview. Electrochimica Acta, 44 (1999) 3165-3176.
[31] D. R. Rosseinsky and R. J. Mortimer, Electrochromic systems and the prospects for devices. Advanced Materials, 13:(11)(2001) 783-793.
[32] S. K. Deb and R. F. Shaw, Electro-optical device having variable optical density. U. S. Patent, 3,521,941 (1970).
[33] F. T. Bauer and J. H. Bechtel, Automatic rearview mirror for automotive vehicles. U. S. Patent, 4,443,057 (1984).
[34] 林巧芬, 以紫精搭配普魯士藍電致色變元件之研究. 國立台灣大學化學工程學研究所碩士論文, 台北, 台灣, (2003).
[35] M. A. Habib, S. P. Maheswari, and M. K. Carpenter, A tungsten-trioxide/prussian blue complementary electrochromic cell with a polymer electrolyte Journal of Applied Electrochemistry, 21 (1991) 203-207.
[36] C.G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindstrtm, G.A. Niklasson, C.-G. Ribbing, D. RiSnnow, M. S. Mattsson, and M. Veszelei, Towards the smart window: progress in electrochromics. Journal of Non-Crystalline Solids, 218 (1997) 273-279.
[37] C. M. Lampert and C. G. Granqvist, Large-area chromogenics: Materials and devices for transmittane control. SPIE—The International Society for Optical Engineering, Bellingham, (1990).
[38] E. S. Lee and D. L. DiBartolomeo, Application issues for large-area electrochromic windows in commercial buildings. Solar Energy Materials & Solar Cells 71:(4)(2002) 465-491.
[39] G. R. Whittell, M. D. Hager, U. S. Schubert, and I. Manners, Functional soft materials from metallopolymers and metallosupramolecular polymers. Nature Materials, 10:(3)(2011) 176-188.
[40] T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, and E. W. Meijer, Supramolecular Polymerization. Chemical Review, 109 (2009) 5687-5754.
[41] U. S. Schubert and C. Eschbaumer, Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. Angewandte Chemie International Edition, 41 (2002) 2892-2926.
[42] T. Vermonden, J. van der Gucht, P. de Waard, A. T. M. Marcelis, N. A. M. Besseling, E. J. R. Sudho1lter, G. J. Fleer, and M. A. C. Stuart, Water-soluble reversible coordination polymers: chains and rings. Macromolecules, 36 (2003) 7035-7044.
[43] E. C. Constable, A. M. W. C. Thompson, P. Harveson, L. Macko, and M. Zehnder, Metal-mediated synthesis of multidomain ligands- a new strategy for metallosupramolecular chemistry Chemistry - A European Journal, 1:(6)(1995) 360-367.
[44] T. K. Sievers, A. Vergin, H. Mohwald, and D. G. Kurth, Thin films of cross-linked metallo-supramolecular coordination polyelectrolytes. Langmuir, 23:(24)(2007) 12179-12184.
[45] Y. Ya and J. Huang, Hierarchical assemblies of coordination supramolecules. Coordination Chemistry Reviews, 254:(9-10)(2010) 1072-1080.
[46] P. K. Iyer, J. B. Beck, C. Weder, and S. J. Rowan, Synthesis and optical properties of metallo-supramolecular polymers Chemical Communications, (2005) 319-321.
[47] V. A. Friese and D. G. Kurth, From coordination complexes to coordination polymers through self-assembly. Current Opinion in Colloid and Interface Science, 14:(2)(2009) 81-93.
[48] S. Ege, Organic Chemistry: Structure and Reactivity. Houghton Mifflin Company College Division, Boston, (2003) 30-33.
[49] R. E. Gillard, F. M. Raymo, and J. F. Stoddart, Controlling self-assembly. Chemistry - A European Journal, 3 (1997) 1933-1940.
[50] G. F. Swiegers and T. J. Malefetse, Multiple-interaction self-assembly in coordination chemistry. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 40 (2001) 253-264.
[51] S. Leininger, B. Olenyuk, and P.J. Stang, Self-assembly of discrete cyclic nanostructures mediated by transition metals. . Chemical Review, 100:(853-908)(2000).
[52] N. Chandrasekhar and R. Chandrasekar, 'Click-Fluors': synthesis of a family of pi-conjugated fluorescent back-to-back coupled 2,6-bis(triazol-1-yl)pyridines and their self-assembly studies. The Journal of Organic Chemistry, 75:(14)(2010) 4852-4855.
[53] I. Welterlich and B. Tieke, Conjugated polymer with benzimidazolylpyridine ligands in the side chain: metal ion coordination and coordinative self-assembly into fluorescent ultrathin films. Macromolecules, 44:(11)(2011) 4194-4203.
[54] V. Balzani and A. Juris, Photochemistry and photophysics of Ru(II)polypyridine complexes in the Bologna group. From early studies to recent developments. Coordination Chemistry Reviews, 211 (2001) 97–115.
[55] H. D. Abruiia, P. Denisevich, M. Umaiia, T. J. Meyer, and R. W. Murray, Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. Journal of the American Chemical Society, 103 (1981) 1-5.
[56] M. Li, A. Patra, Y. Sheynin, and M. Bendikov, Hexyl-Derivatized Poly(3,4-ethylenedioxyselenophene): novel highly stable organic electrochromic material with high contrast ratio, high coloration efficiency, and low-switching voltage. Advanced Materials, 21:(17)(2009) 1707-1711.
[57] J. -M Lehn and F. Vogtle (Ed.), Supramolecular Chemistry: An Introduction. John Wiley and Sons, New York, (1995).
[58] P. R. Andres and U. S. Schubert, New functional polymers and materials based on 2, 2':6', 2'-terpyridine metal complexs. Advanced Materials, 16:(13)(2004) 1043-1068.
[59] E. C. Constable, The coordination chemistry of 2, 2'-6',2' terpyridine and higher oligopyridines. Advanced in Inorganic Chemistry, 30 (1986) 69-121.
[60] A. Maier, A. R. Rabindranath, and B. Tieke, Fast-switching electrochromic films of zinc polyiminofluorene-terpyridine prepared upon coordinative supramolecular assembly. Advanced Materials, 21:(9)(2009) 959-963.
[61] A. R. Rabindranath, A. Maier, M. Schafer, and B. Tieke, Luminescent and ionochromic polyiminofluorene with conjugated terpyridine substituent groups. Macromolecular Chemistry and Physics, 210:(8)(2009) 659-668.
[62] A. Maier, A. R. Rabindranath, and B. Tieke, Coordinative supramolecular assembly of electrochromic films based on metal ion complexes of polyiminofluorene with terpyridine substituent groups. Chemistry of Materials, 21:(15)(2009) 3668-3676.
[63] A. Maier, H. Fakhrnabavi, A. R. Rabindranath, and B. Tieke, Supramolecular assembly of electrochromic films of terpyridine-functionalized polyiminocarbazolylene metal complexes. Journal of Materials Chemistry, 21:(15)(2011) 5795-5804.
[64] A. Maier, K. Cheng, J. Savych, and B. Tieke, Double-electrochromic coordination polymer network films. ACS Applied Materials & Interfaces, 3:(7)(2011) 2710-2718.
[65] A. Maier and B. Tieke, Coordinative layer-by-layer assembly of electrochromic thin films based on metal ion complexes of terpyridine-substituted polyaniline derivatives. The Journal of Physical Chemistry B, 116:(3)(2012) 925-934.
[66] 陳暐翰, 含亞銅金屬超分子高分子電解質之光電性質及其電致色變應用之研究. 國立台灣大學化學工程學研究所碩士論文, 台北, 台灣, (2012).
[67] A. Maldotti, Photochemistry and photophysics of transition-metal complexes. Photochemistry, 37 (2009) 242-250.
[68] M. Higuchi, Electrochromic organic–metallic hybrid polymers: fundamentals and device applications. Polymer Journal, 41:(7)(2009) 511-520.
[69] F. S. Han, M. Higuchi, T. Ikeda, Y. Negishi, T. Tsukuda, and D. G. Kurth, Luminescence properties of metallo-supramolecular coordination polymers assembled from pyridine ring functionalized ditopic bis-terpyridines and Ru(II) ion. Journal of Materials Chemistry, 18:(38)(2008) 4555-4560.
[70] R. R. Pal, M. Higuchi, Y. Negishi, T. Tsukuda, and D. G. Kurth, Fluorescent Fe(II) metallo-supramolecular polymers: metal-ion-directed self-assembly of new bisterpyridines containing triethylene glycol chains. Polymer Journal, 42:(4)(2010) 336-341.
[71] Y. Bodenthin, G. Schwarz, Z. Tomkowicz, M. Lommel, T. Geue, W. Haase, H. Mohwald, U. Pietsch, and D. G. Kurth, Spin-crossover phenomena in extended multi-component metallo-supramolecular assemblies. Coordination Chemistry Reviews, 253:(19-20)(2009) 2414-2422.
[72] J. Li, Z. Futera, H. Li, Y. Tateyama, and M. Higuchi, Conjugation of organic-metallic hybrid polymers and calf-thymus DNA. Physical Chemistry Chemical Physics, 13:(11)(2011) 4839-4841.
[73] S. Bernhard, J. I. Goldsmith, K. Takada, and H. D. Abruna, Iron(II) and Copper(I) coordination polymers: electrochromic materials with and without chiroptical properties. Inorganic chemistry, 42 (2003) 4389-4393.
[74] D. G. Kurth, M. Schutte, and J. Wen, Metallo-supramolecular polyelectrolyte multilayers with cobalt(II): preparation and properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198-200 (2002) 633-643.
[75] D. G. Kurth, J. P. Lopez, and W. F. Dong, A new Co(II)-metalloviologen-based electrochromic material integrated in thin multilayer films. Chemical communications (Cambridge, England) 16 (2005) 2119-2121.
[76] F. S. Han, M. Higuchi, and D. G. Kurth, Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: photophysical, electrochemical, and electrochromic properties. Journal of the American Chemical Society, 130 (2008) 2073-2081.
[77] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Solitons in conducting polymers. Reviews of Modern Physics, 60 (1988) 781-850.
[78] H. Letheby, On the production of a blue substance by the electrolpsis. Journal of the Chemical Society, Chemical Communications, 15 (1862) 161-163.
[79] T. Ito, H. Shirakawa, and S. Ikeda, Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. Journal of Polymer Science Part A: Polymer Chemistry, 12 (1974) 11-20.
[80] H. Shirakawa, E. J. Lewis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, (1977) 578-580.
[81] J. Roncali, Conjugated poly(thiophenes): synthesis, functionalization and applications. Chemical Reviews, 92 (1992) 711-738.
[82] J. Ohshita, A. Matsuguchi, K. Furumori, R. F. Hong, M. Ishikawa, T. Yamanaka, T. Koike, and J. Shioya, Polymeric organosilicon systems. 11. synthesis and some properties of poly(disilanylenebutenyne-1,4-diyls) and poly[(methylphenylsilylene)butenyne-1,4-diyl]. Macromolecules, 25 (1992) 2134-2140.
[83] C. L. Curtis, J. E. Ritchie, and M. J. Sailor, Fabrication of conducting polymer interconnects. Science, 262 (1993) 2014-2016.
[84] H. Sirringhaus, T. Kawase, R .H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, High-resolution inkjet printing of all-polymer transistor circuits. Science, 290 (2000) 2123-2126.
[85] M.-A. De Paoli and W. A. Gazottib, Electrochemistry, polymers and opto-electronic devices: A combination with a future. Journal of the Brazilian Chemical Society, 13:(4)(2002) 410-424.
[86] 陳威凱, PANI或PANI/SiO2與PMeT或PProDOT-Et2搭配之互補式電致色變元件:最適化與穩定性. 國立台灣大學化學工程學研究所碩士論文, 台北, 台灣, (2009).
[87] M. Beaujuge P, S. Ellinger, and J. R. Reynolds, The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nature Materials, 7 (2008) 795-799.
[88] C. R. Martins and M. A. De Paoli, Antistatic thermoplastic blend of polyaniline and polystyrene prepared in a double-screw extruder. European Polymer Journal, 41 (2005) 2867-2873.
[89] A. Kaynak, Electromagnetic shielding effectiveness of galvanostatically synthesized conducting polypyrrole films in the 300-2000 MHz frequency range. Materials Research Bulletin, 31 (1996) 845-860.
[90] N. Ahmad and A. G. MacDiarmid, Inhibition of corrosion of steels with the exploitation of conducting polymers. Synthetic Metals, 78 (1996) 103-110.
[91] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, All-polymer field-effect transistor realized by printing techniques. Science, 265 (1994) 1684-1686.
[92] S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, and J. C. Scott, Polymeric anodes for improved polymer light-emitting diode performance. Applied Physics Letters, 70 (1997) 2067-2069.
[93] Y. Kudoh, K. Akami, and Y. Matsuya, Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode. Synthetic Metals, 102 (1999) 973-974.
[94] B. Adhikari and S. Majumdar, Polymers in sensor applications. Progress in Polymer Science, 29 (2004) 699-766.
[95] S. J. Dong, Z. S. Sun, and Z. L. Lu, Chloride chemical sensor based on an organic conducting polypyrrole polymer. Analyst (1988) 1525-1528.
[96] G. R. Goward, F. Leroux, and L. F. Nazar, Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries. Electrochimica Acta, 43 (1998) 1307-1313.
[97] S. Joseph, J. C. McClure, R. Chianelli, P. Pich, and P. J. Sebastian, Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC). International Journal of Hydrogen Energy, 30 (2005) 1339-1344.
[98] S. X. Tan, J. Zhai, M. X. Wan, Q. B. Meng, Y. L. Li, L. Jiang, and D. B. Zhu, Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. The Journal of Physical Chemistry B, 108 (2004) 18693-18697.
[99] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Plastic solar cells. Advanced Functional Materials, 11 (2001) 15-26.
[100] S. W. Hwang and K. C. Ho, An all-thiophene electrochromic device fabricated with poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 90 (2006) 491-505.
[101] T. H. Lin and K. C. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 90 (2006) 506-520.
[102] J. Y. Wang, C. M. Yu, S. C. Hwang, K. C. Ho, and L. C. Chen, Influence of coloring voltage on the optical performance and cycling stability of a polyaniline-indium hexacyanoferrate electrochromic system. Solar Energy Materials and Solar Cells, 92 (2008) 112-119.
[103] G. Harsanyi, Polymer Films in Sensor Applications. CRC Press, Boca Raton, Florida, (1995) 206.
[104] M. G. Hill, K. R. Mann, L. L. Miller, and J. F. Penneau, Oligothiophene cation radical dimers. An alternative to bipolarons in oxidized polythiophene. Journal of the American Chemical Society, 114 (1992) 2728-2730.
[105] E. M. Genies, A. Boyke, M. Lapkowski, and C. Tsintavis, Polyaniline - a historical survey. Synthetic Metals, 36 (1990) 139-182.
[106] E. T. Kang, K. G. Neoh, and K. L. Tan, Polyaniline: a polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23 (1998) 277-324.
[107] N. Gospodinova and L. Terlemezyan, Conducting polymers prepared by oxidative polymerization: polyaniline. Progress in Polymer Science, 23 (1998) 1443-1484.
[108] W. K. Chen, C. W. Hu, C. Y. Hsu, and K. C. Ho, A study on the electrochromic properties of polyaniline/silica composite films with an enhanced optical contrast. Electrochimica Acta, 54:(18)(2009) 4408-4415.
[109] Z. Cai, M. Geng, and Z. Tang, Novel battery using conducting polymers: Polyindole and polyaniline as active materials. Journal of Materials Science, 39 (2004) 4001-4003.
[110] K. Kanamura, Y. Kawai, S. Yonezawa, and Z. I. Takehara, Effect of morphology of polyaniline on its discharge characteristics in nonaqueous electrolyte. Journal of the Electrochemical Society, 42 (19951) 2894-2899.
[111] J. Desilvestro, W. Scheifele, and O. Hass, In situ determination of gravimetric and volumetric charge densities of battery electrodes. Journal of the Electrochemical Society, 139 (1992) 2727-2736.
[112] S. Mu, Rechargeable batteries based on poly(aniline-co-o-aminophenol) and the protonation of the copolymer. Synthetic Metals, 143 (2004) 269-275.
[113] Y. G. Wang and X. G. Zhang, All solid-state supercapacitor with phosphotungstic acid as the proton-conducting electrolyte. Solid State Ionics, 166 (2004) 61-67.
[114] Y. K. Zhou, B. L. He, W. J. Zhou, J. Huang, X. H. Li, B. Wu, and H. L. Li, Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochimica Acta, 49 (2004) 257-262.
[115] K. S. Ryu, K. M. Kim, Y. J. Park, N. G. Park, M. G. Kang, and S. H. Chang, Redox supercapacitor using polyaniline doped with Li salt as electrode. Solid State Ionics, 152 (2002) 861-866.
[116] T. Tatsuma, T. Ogawa, R. Sato, and N. Oyama, Peroxidase-incorporated sulfonated polyaniline-polycation complexes for electrochemical sensing of H2O2. Journal of Electroanalytical Chemistry, 501 (2001) 180-185.
[117] S. Koul and R. Chandra, Mixed dopant conducting polyaniline reusable blend for the detection of aqueous ammonia. Sensors and Actuators B: Chemical, 104 (2005) 57-67.
[118] S. Takeda, New type of CO2 sensor built up with plasma polymerized polyaniline thin film. Thin Solid Films, 344 (1999) 313-316.
[119] W. Takashima, M. Kaneko, K. Kaneto, and A. G. MacDiarmid, Electrochemical actuator using electrochemically-deposited polyaniline film. Synthetic Metals, 71 (1995) 2265-2266.
[120] B. Qi, W. Lu, and B. R. Mattes, Strain and energy efficiency of polyaniline fiber electrochemical actuators in aqueous electrolytes. The Journal of Physical Chemistry B, 108 (2004) 6222-6227.
[121] F. Rourke and J. A. Crayston, Cyclic voltammetry and morphology of polyaniline-coated electrodes containing [Fe(CN)6]3-/4- Ions. Journal of the Chemical Society, Chemical Communications, Faraday Transition 89 (1993) 295-302.
[122] A. G. MacDiarmid, J. C. Chiang, and A. F. Richter, Polyaniline: a new concept in conducting polymers. Synthetic Metals, 18 (1987) 285-290.
[123] A. G. MacDiarmid, Polyaniline and polypyrrole: where are we headed? Synthetic Metals, 84 (1997) 27-34.
[124] A. Baba, S. Tian, F. Stefani, C. Xia, Z. Wang, R. C. Advincula, D. Johannsmann, and W. Knoll, Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. Journal of Electroanalytical Chemistry, 562 (2004) 95-103.
[125] Y. Cao, G. M. Treacy, P. Smith, and A. J. Heeger, Solution-cast films of polyaniline: optical-quality transparent electrodes. Applied Physics Letters, 60 (1992) 2711-2713.
[126] P. Rannou, M. Nechtschein, J. P. Travers, D. Berner, A. Wolter, and D. Djurado, Ageing of PANI: chemical, structural and transport consequences. Synthetic Metals, 101 (1999) 734-737.
[127] M. Trchova, I. Šeděnkova, E. Tobolkova, and J. Stejskal, FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polymer Degradation and Stability, 86:(1)(2004) 179-185.
[128] J. Anand, S. Palaniappan, and D. N. Sathyanarayana, Conducting polyaniline blends and composites. Progress in Polymer Science, 23 (1998) 993-1018.
[129] R. Gangopadhyay and A. De, Conducting Polymer nanocomposites: a brief overview. Chemistry of Materials, 12 (2000) 608-622.
[130] P. Gomez-Romero, Hybrid organic-inorganic materials- in search of synergic activity. Advanced Materials, 13 (2001) 163-174.
[131] S. P. Armes, S. Gottesfeld, J. G. Beery, F. Garzon, and S. F. Agnew, Conducting polymer-colloidal silica composites. Polymer, 32 (1991) 2325-2330.
[132] T. Hwang, M. Quilitz, and H. Schmidt, Comparison of the electrochromic, properties of films made of silica/polyaniline composite nanoparticles and films made of pure polyaniline. Journal of New Materials for Electrochemical Systems, 10 (2007) 237-242.
[133] M. Gill, J. Mykytiuk, S. P. Armes, J. L. Edwards, T. Yeates, P. J. Moreland, and C. Mollett, Novel colloidal polyaniline-silica composites. Journal of the Chemical Society, Chemical Communications, (1992) 108-109.
[134] M. Gill, S. P. Armes, D. Fairhurst, S. N. Emmett, G. Idzorek, and T. Pigott, Particle size distributions of polyaniline-silica colloidal composites. Langmuir, 8 (1992) 2178-2182.
[135] S. Dogan, U. Akbulut, and L. Toppare, Conducting polymers of aniline I. electrochemical synthesis of a conducting composite. Synthetic Metals, 53 (1992) 29-35.
[136] H. Yoneyama, S. Hirao, and S. Kuwabata, Preparation and electrochemical properties of WO3-incorporated polyaniline films. Journal of the Electrochemical Society, 139 (1992) 3141-3146.
[137] N. Leventis and Y. C. Chung, Polyaniline-prussian blue novel composite material for electrochromic applications. Journal of the Electrochemical Society, 137 (1990) 3321-3322.
[138] C. G. Wu and T. Bein, Conducting polyaniline filaments in a mesoporous channel host. Science, 264 (1990) 1757-1759.
[139] M. G. Han, S. K. Cho, S. G. Oh, and S. S. Im, Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synthetic Metals, 126 (2002) 53-60.
[140] J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, Nanostructured polyaniline sensors. Chemistry - A European Journal, 10 (2004) 1315-1319.
[141] J. M. Yeh, S. J. Liou, C. Y. Lai, and P. C. Wu, Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline-clay nanocomposite materials. Chemistry of Materials, 13 (2001) 1131-1136.
[142] N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Applied Physics Letters, 83 (2003) 4244-4246.
[143] J. Jang, J. Ha, and K. Kim, Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer. Thin Solid Films, 516 (2008) 3152-3156.
[144] J. X. Lu, K. S. Moon, B. K. Kim, and C. P. Wong, High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer, 48 (2007) 1510-1516.
[145] S. Koul, R. Chandra, and S. K. Dhawan, Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sensors and Actuators B: Chemical, 75 (2001) 151-159.
[146] N. Oyama, T. Tatsuma, T. Ssto, and T. Sotomura, Dimercaptan-polyaniline composite electrodes for lithium batteries with High energy density. Nature, 373 (1995) 598-600.
[147] M. Y. Chang, C. S. Wu, Y. F. Chen, B. Z. Hsieh, W. Y. Huang, K. S. Ho, T. H. Hsieh, and Y. K. Han, Polymer solar cells incorporating one-dimensional polyaniline nanotubes. Organic Electronics, 9 (2008) 1136-1139.
[148] G. W. Jang, C. Chen, R. W. Gumbs, Y. Wei, and J. M. Yeh, Large-area electrochromic coatings - composites of polyaniline and polyacrylate-silica hybrid set gel materials. Journal of the Electrochemical Society, 143 (1996) 2591-2596.
[149] M. Deepa, S. Ahmad, K. N. Sood, J. Alam, and A. K. Srivastava, Electrochromic properties of polyaniline thin film nanostructures derived from solutions of ionic liquid/polyethylene glycol. Electrochimica Acta, 52 (2007) 7453-7463.
[150] S. X. Xiong, Y. Xiao, J. Ma, L. Y. Zhang, and X. H. Lu, Enhancement of electrochromic contrast by tethering conjugated polymer chains onto polyhedral oligomeric silsesquioxane nanocages. Macromolecular Rapid Communications, 28 (2007) 281-285.
[151] U. Leon-Silva, M. E. Nicho, H. Hu, and R. Cruz-Silva, Effect of modified ITO substrate on electrochromic properties of polyaniline films. Solar Energy Materials and Solar Cells, 91 (2007) 1444-1448.
[152] Y. K. Kang, M.-H. Lee, and S.-B. Rhee, Electrochemical properties of polyaniline doped with poly(styrenesulfonic acid). Synthetic Metals, 52 (1992) 319-328.
[153] L. Chen, Q. Gu, X. Zhou, S. Lee, Y. Xia, and Z. Liu, New-concept batteries based on aqueous Li(+)/Na(+) mixed-ion electrolytes. Science Reports, 3:(1946)(2013) 1-7.
[154] L. M. Huang, C. H. Chen, and T. C. Wen, Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid). Electrochimica Acta, 51:(26)(2006) 5858-5863.
[155] J. H. Cho S. J. Yoo, J. W. Lim, S. H. Park, J. Jang, and Y.-E. Sung, High contrast ratio and fast switching polymeric electrochromic films based on water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles. Electrochemistry Communications, 12:(1)(2010) 164-167.
[156] J. Jang, J. Ha, and J. Cho, Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) anoparticles for inkjet-printed chemical-sensor applications. Advanced Materials, 19:(13)(2007) 1772-1775.
[157] 林正嵐, 普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究. 國立台灣大學化學工程學研究所博士論文, 台北, 台灣, (2002).
[158] C. W. Hu, T. Sato, J. Zhang, S. Moriyama, and M. Higuchi, Multi-colour electrochromic properties of Fe/Ru-based bimetallo-supramolecular polymers. Journal of Materials Chemistry C, 1:(21)(2013) 3408-3413.
[159] G. Sauerbrey, Verwendung von schwingquarzen zur wigung diinner schichten und zur mikrowigung. Zeitschrift fiir Physikt, 155 (1959) 206-222.
[160] S. L. de Albuquerque Maranhao and R. M. Torresi, Anion and solvent exchange as a function of the redox states in polyaniline films. Journal of the Electrochemical Society, 146 (11)(1999) 4179-4182.
[161] H. Varela, S. L. de Albuquerque Maranha, E. A. Ticianelli, and R. M. Torresi, Comparisons of charge compensation process in aqueous media of polyaniline and self-doped polyanilines. Synthetic Metals, 122 (2001) 321-327.
[162] R. J. Forster and J. G. Vos, Charge transport properties of poly(N-vinylimidazole) containing [Os(N)6]2+/3+ moieties. Journal of lnorganic and Organometallic Polymers, 1:(1)(1991) 67-86.
[163] F. Mao, N. Mano, and A. Heller, Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme 'wiring' hydrogels. Journal of the American Chemical Society, 125 (2003) 4951-4957.
[164] T. H. Lin and K. C. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 90:(4)(2006) 506-520.
[165] L. C. Chen and K. C. Ho, Design equations for complementary electrochromic devices: application to the tungsten oxide–Prussian blue system. Electrochimica Acta, 46 (2001) 2151-2158.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56506-
dc.description.abstract在電致色變領域中提及對於全可見光波段皆具有吸收能力(或全波段吸收)之元件的文獻相當有限。電致色變材料具有互補顏色有其潛力組成全波段吸收的電致色變元件。相較於其他文獻需繁複的合成方法及製程,本研究提供一種簡單的方式以建立一個可從全黑轉變至透明之電致色變元件。近年來,金屬超分子系統在許多電化學系統具有良好的表現,包含其在電致色變之應用。一些過渡金屬像是鐵和釕曾被提及做為此種金屬超分子材料之金屬離子的來源。本篇論文主要以無機金屬離子與有機配位基分子所合成之金屬超分子材料搭配有機高分子聚苯胺-聚苯乙烯磺酸混合物,進行研究與討論其於電致色變上之性質。本研究是以化學合成之含釕金屬超分子高分子(Ru(II)-MEPE)為主要的電致色變材料。在此研究中,含釕之超分子高分子的光學、電化學性質皆會有詳盡的研究,其呈現紅色且因為其電荷傳導是透過金屬到配位基之電荷轉移方式,因此具有良好且可逆的氧化還原反應和高穿透度變化(在510奈米波長下為ΔT=52%);透過EQCM分析薄膜電量及質量變化,我們可以了解陰離子及溶劑在進行氧化還原時的莫耳通量;另一方面,聚苯胺聚合過程摻入聚苯乙烯磺酸可以改善其在水中的分散性,著色態呈綠色,可與前面提及之Ru(II)-MEPE組成互補式的電致色變元件。這兩種薄膜材料都可以簡單的噴塗塗佈法在ITO基材上製作成膜。本研究所組成的互補式電致色變元件其氧化還原反應之操作電位窗在-1.5 V及1.5 V之間 (Ru-MEPE vs. PANI:PSS)。電位在-1.5 V時,元件呈現黑色,當電位上升至1.5 V時,元件呈透明。兩極之電量搭配影響電致色變元件之穿透度變化,因此,在嘗試過多種組合後,最好的比例是元件之電量為0.75時具有最好的穿透度變化及長期穩定性,其最明顯的穿透度變化發生在波長510奈米處,為40.1%,相較於其他兩個波長550奈米及700奈米之穿透度變化分別為28.6%及32.2%。著去色時間定義為95%變色時,此元件之著色時間為4.0 s和去色時間1.3 s。至於電化學分析之量測,此元件可在操作200圈後於某定波長仍保持大部分的穿透度變化。zh_TW
dc.description.abstractOnly a few limited researches devoting to electrochromic devices (ECDs) having absorption in the entire visible range (or all-band absorption). Electrochromic materials with complementary colour have potential to be fabricated as ECDs having all-band absorption. Comparing with other complicated syntheses of black-to-transparent ECDs, this work provides a simple way to build up a black-to-transparent ECD. Metallo-supramolecular polymers (MEPEs) are metallic-organic complexes. In recent year, MEPEs have shown good performance in many electrochemical systems including eletrochrmism. Several transition metal ions, such as iron (Fe) and ruthenium (Ru), have been proposed as the source of material ions for MEPEs. In this work, optical, electrochemical properties of Ru-based MEPE are presented. Ru-based MEPE, having red colour, offers great redox reversibility and high transmittance change (ΔT=52% at 510 nm) because of the metal-to-ligand charge transfer (MLCT). From EQCM analysis, the molar flux of the anion and solvent could be calculated through the charge and mass change of the thin film. On the other hand, polyaniline doped with polystyrene sulfonate (PANI:PSS) is water-dispersible and suitable to arrange in pairs with Ru-MEPE. These two thin-film materials are easily prepared and coated on ITO substrate by spray coating. The redox reaction for the complementary ECD consisting of Ru-MEPE/PANI:PSS can be driven between -1.5 V and 1.5 V. The ECD becomes black at -1.5 V (Ru-MEPE vs. PANI:PSS) while it is colourless at 1.5 V. The influence of the charge capacity ratio of the two electrodes on the transmittance change of the ECDs has been tried, and the best condition is found at a charge capacity of 0.75. Its largest transmittance change is about 40.1% at 510 nm, as compared to 28.6% and 32.3%, at 550 nm and 700 nm, respectively. The switching times (defined as the time it takes for reaching 95% saturated transmittance change at 510 nm) are 4.0 s for darkening and 1.3 s for bleaching. From the electrochemical analysis, we prepared stable ECD with only a small transmittance decay after 200 cycles at the specific wavelength.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:32:00Z (GMT). No. of bitstreams: 1
ntu-103-R01549013-1.pdf: 10760473 bytes, checksum: 26eb860c2dfc4960ccbc008a77eb03fd (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
致謝 I
中文摘要 II
Abstract III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XIII
縮寫說明 XV
第一章 緒論 1
前言 1
電致色變技術簡介 3
1-2-1電致色變技術之發展 3
1-2-2 電致色變材料與元件類型 4
1-2-2-1 電致色變材料 4
1-2-2-2 電致色變元件之類型與結構 7
1-2-3 電致色變元件之性能要求 13
第二章 文獻回顧與研究動機 14
2-1 金屬超分子系統之介紹 14
2-1-1 配位基 17
2-1-2側鏈含有聯啶之共軛高分子 18
2-1-3配位高分子系統 22
2-2 金屬超分子高分子 (MEPEs) 26
2-3 導電高分子簡介 30
2-3-1 導電高分子之發展及應用 31
2-3-2 導電高分子之導電機制 34
2-3-2-1 能帶理論 35
2-3-2-2 導電高分子理論 38
2-4 導電高分子PANI及其複合膜 40
2-4-1 聚苯胺(PANI)簡介 40
2-4-2 PANI之光電行為 42
2-4-3 PANI複合材料應用於電致色變之發展 46
2-5 研究動機與架構 49
第三章 實驗部分 51
3-1 實驗儀器 51
3-2 實驗藥品 52
3-3 實驗方法 53
3-3-1導電玻璃前處理 53
3-3-2 藥品前處理 53
3-3-3 電致色變薄膜製備 54
3-3-3-1 Ru-MEPE 化學合成方法 54
3-3-3-2 水溶性PANI:PSS 化學合成方法 55
3-3-4 電致色變薄膜之製備 56
3-3-4-1 Ru-MEPE 薄膜製備 56
3-3-4-2 PANI:PSS 薄膜製備 57
3-3-5 電解質之製備 57
3-3-5-1 LiClO4+HClO4+ACN液態電解質 57
3-3-6 電致色變元件之組裝與封裝 58
3-4 分析方法 60
3-4-1 電化學特性分析 60
3-4-1-1 薄膜電化學特性分析-三極式 60
3-4-1-2 元件電化學特性分析-二極式 60
3-4-2 In-situ UV-VIS 光譜分析 60
第四章 含釕金屬超分子薄膜 64
4-1 Ru-MEPE 薄膜之化學合成 65
4-2 電化學性質量測 68
4-3 表面形態分析 70
4-4光學性質測試 71
4-5 著色效率 74
4-6 離子進出Ru-MEPE薄膜之行為 76
4-6-1 在白金石英震盪電極上製備Ru-MEPE薄膜 76
4-6-2 離子進出薄膜之原位(in situ)分析 76
4-6-3 EQCM 分析 79
4-6-3-1 陰陽離子進出Ru-MEPE薄膜之行為 79
4-6-3-2 Ru-MEPE的氧化還原方程式 85
4-7 Ru-MEPE氧化還原反應之機制討論 86
第五章 聚苯胺複合薄膜 88
5-1 PANI:PSS薄膜分析 88
5-1-1 PANI:PSS化學合成 88
5-1-2電化學性質 90
5-1-3光學性質測試 93
5-1-4表面形態分析 97
第六章 電致色變元件特性分析 100
6-1 Ru-MEPE 與 PANI:PSS之元件組成與封裝 100
6-1-1 元件設計方程式 100
6-1-2 元件封裝 107
6-1-3 操作電位窗之選擇 107
6-1-4光學性質量測 111
6-1-5 元件之長期穩定性 113
第七章 結論與建議 116
7-1 結論 116
7-2 建議 117
第八章 參考文獻 118
dc.language.isozh-TW
dc.subject著色效率zh_TW
dc.subject以釕金屬超分子zh_TW
dc.subject聚苯胺/聚苯乙烯磺酸zh_TW
dc.subject互補式電致色變元件zh_TW
dc.subject可見光全波段吸收zh_TW
dc.subjectRu-based MEPEen
dc.subjectPANI:PSSen
dc.subjectcomplementary electrochromic deviceen
dc.subjectall-band absorption in the visible rangeen
dc.subjectcoloration efficiencyen
dc.title以釕金屬超分子與聚苯胺摻混聚苯乙烯磺酸組成可見光全波段吸收之電致色變元件zh_TW
dc.titleAn Electrochromic Device Having Absorption in the Entire Visible Range with Ruthenium-based Metallo-supramolecular Polymers and Polyaniline-Poly(4-styrenesulfonate) Composite Filmsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周澤川(Tse-Chuan Chou),楊明長(Ming-Chang Yang),吳春桂,陳林祈(Lin-Chi Chen)
dc.subject.keyword可見光全波段吸收,著色效率,互補式電致色變元件,聚苯胺/聚苯乙烯磺酸,以釕金屬超分子,zh_TW
dc.subject.keywordall-band absorption in the visible range,coloration efficiency,complementary electrochromic device,PANI:PSS,Ru-based MEPE,en
dc.relation.page125
dc.rights.note有償授權
dc.date.accepted2014-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
10.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved