Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56485
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖(Hoang Yan Lin)
dc.contributor.authorChen-Hung Linen
dc.contributor.author林貞宏zh_TW
dc.date.accessioned2021-06-16T05:30:55Z-
dc.date.available2016-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation1. T. Smith, The changes in aberrations when the object and stop are moved, Trans. Opt. Soc. 23,No.5, pp. 139-153 (1921).
2. H. H. Hopkins, Herschel's condition, Proc. Phys. Soc., 58, No.1, pp. 100-105, (1946).
3. G. C. Steward, The symmetrical optical system, London, Cambridge University Press, (1928).
4. C. G. Wynne, Primary aberrations and conjugate change, Proc. Phys., Soc. B 65, No. 6, pp. 429-437 (1952).
5. W.S.S. Blaschke, A procedure for the differential correction of optical systems Allowing Large Parameter Changes, Optica Acta: International Journal of Optics, 3, issue 1, pp. 10-23 (1956)
6. Ellis I. Betensky, Utilization of moving lens elements for compensation of aberrations resulting from major conjugate changes, Proc. SPIE 0039, pp. 231-237 (1974).
7. Melvyn H. Kreitzer, Complex photographic lenses for low-cost high production-a design example, Proc. SPIE 0147, pp. 109-116 (1978).
8. Ellis I. Betensky and Melvyn H. Kreitzer, Continuous close focusing telephoto zoom lenses, SPIE Vol. 237, pp. 488-495 (1980).
9. Erwin Delano, Stop and conjugate shift for systems of curved Fresnel surfaces, JOSA, Vol. 73, Issue 12, pp. 1828-1831 (1983).
10. David Shafer, Aberration theory and the meaning of life, Proc. SPIE 0554, pp. 25-3 (1986).
11. Juan L. Rayces, General solution of the image space paraxial ray angle, Applied Optics, Vol. 24, Issue 17, pp. 2752-2753 (1985).
12. Kazuo Tanaka, Conjugate-shift invariant in terms of Gaussian brackets, Applied Optics, Vol. 25, Issue 10, pp. 1531-1532 (1986).
13. Ellis I. Betensky, Invited paper: Role of aspherics in zoom lens design, Proc. SPIE 1354, pp. 656-662 (1990).
14. H. Ohtsuka, T.Onodera, K.Kuwahara, T.Taguchi, , A novel multiple focus position control method by conjugate twin-shifter phase shift lithography, Electron Devices Meeting, 1991. IEDM '91. Technical Digest., International, pp. 59-62 (1991).
15. Larid A. Thompson, UnISIS: University of Illinois Seeing Improvement System (UnISIS)--an adaptive optics instrument for the Mt. Wilson 2.5-m telescope, Proc. SPIE 2201, Adaptive Optics in Astronomy, pp. 1074-1087 (1994).
16. Tom D. Milster and Ronald E. Gerber, Compensation of chromatic errors in high RIA molded objective lenses, Applied Optics, Vol. 34, Issue 34, pp. 8079-8080 (1995).
17. Michael J. Kidger, Design of lenses for variable magnification, Proc. SPIE 2774, pp. 722-727 (1996).
18. Matthew T. Chang and Jose Sasian, Variable spherical aberration generators, Proc. SPIE 3129, pp. 217-228 (1997).
19. Matthew T. Change and Robert R. Shannon, Pupil aberration in zoom lens, Proc SPIE 3129, pp. 205-216, (1997).
20. Matthew T. Chang, Pupil aberration in modular zoom lens design, Doctor dissertation of optical science center Univ. Arizona, (1998).
21. Tom D. Milster, Robert S. Upton, Hui Luo, Objective lens design for multi-layer optical data storage, Opt Eng. 38 (2) pp. 295-301 (1999).
22. David F. Schack, Variation of magnification with focus, Applied Optics, Vol. 41, Issue 7, pp. 1282-1290 (2002).
23. Edgar Hugues and Joseph Braat, Joint object and pupil imaging in an optical system with symmetry of revolution, J. Opt. A: Pure Appl. Opt. 5 pp. 221-228, (2003).
24. Sjoerd Stallinga, Finite conjugate spherical aberration compensation in high numerical-aperture optical disc readout, Applied Optics, Vol. 44, Issue 34, pp. 7307-7312 (2005).
25. Brian J. Bauman, Anisoplanatism in adaptive optics systems due to pupil aberrations, Proc. SPIE 5903, pp.50903R-1-50903R-12 (2005).
26. Jose Sasian, Interpretation of pupil aberrations in imaging systems, Proc. SPIE 6342, pp. 632408-1-634208-4 (2006).
27. Yuzuru Takashima ; Sergei Orlov and Lambertus Hesselink, Lens designs for page-based holographic storage systems, Proc. SPIE 6620, pp.662024-1-662024-6 (2007).
28. Antonin Miks ; Jiri Novak and Pavel Novak, Determination of third-order aberration coefficients from spherical aberration measurement, Proc. SPIE 7141, pp. 71411Z-1-71411Z-8 (2008).
29. Peng Wu, Edward DeHoog, and Jim Schwiegerling, Systematic error of a large dynamic range aberrometer, Applied Optics, Vol. 48, Issue 32, pp. 6376-6380 (2009).
30. Antonin Misk and Jiri Novak, Estimation of accuracy of optical measuring systems with respect to object distance, Optics express, Vol. 19, No. 15, pp. 14300-14314 (2011).
31. O. Puetsch and P. Loosen, Electro-optically actuated liquid-lens zoom, Proc. of SPIE Vol. 8429, pp. 842906-1-842906-8 (2012).
32. Aurelian Dodoc, Toward the global optimum in zoom lens design, Proc. of SPIE Vol. 8488, pp. 848802-1-848802-18 (2012).
33. J. R. Benford, R.L. Seidenberg, phase contrast microscopy for opaque specimens, JOSA, Vol. 40, Issue 5, pp. 314-316 (1950).
34. Donald P. Feder, Optical calculations with automatic computing machinery, JOSA, Vol. 41, Issue 9, pp. 630-634 (1951).
35. R.S. Longhurst, Correction of pupil aberration in kellner-type eyeoieces, Nature 167, pp. 315 – 316, (1951).
36. S Rosin, Aspherical corrector lens for optical system, US Patent 2,588,414, (1952).
37. K.YAMAJI, Design of zoom lenses; Progress in Optics, 6, pp.105 -170, (1967).
38. Atsuo Osawa ; J. Maxwell and M. J. Salter, Zoom lens design methods for small computers, Proc. SPIE 1013, pp. 27-35 (1989).
39. I. Powell, Optical probe/camera objective having large focusing range, Opt. Eng. 22(1), pp. 121-127 (1983).
40. George W. Hopkins, Projection lenses for a C-size light-valve display, Proc. SPIE 0554, pp. 401-405 (1986).
41. Thomas G. Kuper and Matthew P. Rimmer, Lens modules in optical design, Proc. SPIE 0892, pp. 140-151 (1988).
42. Sung Chan Park and KeunBae Kim, Video camera zoom lens design using lens modules, Proc. SPIE 2539, pp. 192-199 (1995).
43. Sung Chan Park and Robert R. Shannon, Zoom lens design using lens modules, Opt. Eng. 35(6), pp. 1668-1676 (1996).
44. Hisayuki Masumoto, Development of zoom lenses for camera and technical topics: design examples, analysis, optical design method, aspherical lenses, and manufacturing., Proc. SPIE 3482, pp. 202-212, (1998).
45. Thomas H. Jamieson, Refracting afocal systems in thermal imagers, Opt. Eng. 19(6), pp. 888-893 (1980).
46. Philip J. Rogers and David G. Norrie, Theoretical and practical advantages Of using aspheric surfaces in the thermal band, Proc. SPIE 0235, pp. 2-6 (1981).
47. M. Roberts and D. R. J. Campbell, compact infrared continuous zoom telescope, Proc. SPIE 0369, pp.64-76 (1983).
48. S. C. Tam, Optical system for target acquisition and ranging, Opt. Eng. 23(4), pp. 448-452 (1984).
49. Allen Mann, Infrared zoom lenses in the eighties and beyond, Proc. SPIE 1540, pp. 338-349 (1991).
50. Dale A. Buralli and G. Michael Morris, Design of two- and three-element diffractive Keplerian telescopes, Applied Optics, Vol. 31, Issue 1, pp. 38-43 (1992).
51. D. R. Lobb, Theory of concentric designs for grating spectrometers, Applied Optics, Vol. 33, Issue 13, pp. 2648-2658 (1994).
52. Michael D. Missig and G. Michael Morris, Diffractive optics applied to eyepiece design, Applied Optics, Vol. 34, Issue 14, pp. 2452-2461 (1995).
53. Hamid R. Fallah and Jonathan Maxwell, Higher order pupil aberrations in wide angle and panoramic optical systems, Proc. SPIE 2774, pp. 342-351 (1996).
54. I. Powell, Dual Magnification viewfinder, Opt. Eng. 25(1), pp. 184-188 (1986).
55. Stevens Robert, Abd H. Abdullah, and Wayne Cranton, Ultrahigh-resolution emissive micromirror LETFEL displays for the injection of intelligent graticule information in avionic head-up display systems, Proc. SPIE 2774, pp. 735-746 (1996).
56. B. J. Bauman, Anisoplanatism in adaptive optics systems due to pupil aberrations, Proc. SPIE 5903, pp.59030R-1-59030R-12 (2005).
57. Jose Sasian, Interpretation of pupil aberrations in imaging systems, Proc. SPIE 6342, pp. 634208-1- 634208-4 (2006).
58. David F. Schaack, Variation of magnification with focus, Applied Optics, Vol. 41, Issue.7, pp. 1282-1290 (2002).
59. C.H. Chen, Primary aberration changes produced by arbitrary movements of paraxial rays, J. of Modern Optics, 55, issue 1, pp. 105-126, (2008).
60. C.H. Chen, “Modelling the first-and third-order properties of conceptual thick lenses by using three air-spaced thin lenses” 56, issue 16, pp. 1785-1796, (2009).
61. Shunsuke Hase, Masato Shibuya, Kazuhisa Maehara, Mikio Oka, and Suezo Nakadate, “Optical design methods to suppress aberrations which are caused by change of object distance”, Proc. SPIE 8167, pp. 81670Y1-81670Y13 (2011).
62. Li. Ren, M. Shibuya, S. Nakadate, “Comprehensive discussion of the projection relations to restrain aberrations caused by change of object distance”, Proc. SPIE 9042, pp. 904207-1-904207-9 (2013).
63. Sasián, José, Introduction to aberrations in optical imaging systems, 1st ed. , p.167 and 185, Cambridge University Press, New York (2013).
64. W.T. Welford, Aberrations of symmetrical optical system, 1st ed., Adam Hilger, p.139, New York (1986).
65. David V. Wick, Ty Martinez, Don M. Payne, William C. Sweatt and Sergio R. Restaino, “Active optical zoom system”, Proc. SPIE 5798, pp. 151-157 (2005).
66. Chen-Hung Lin, Horng Chang and Hoang Yan Lin, “Application of pupil spherical aberration in tuning zoom lens design”, Journal of Optics 14 issue 6, No.06540, pp. 1-12 (2012).
67. H.Ohtsuka, T.Onodera, K.Kuwahara and T.Taguchi, “A novel multiple focus position control method by conjugate twin-shifter phase phift lithography”, International Electron Devices Meeting, 1991. IEDM '91. Technical Digest., pp. 59-62 (1991).
68. Lei Li, Qiong-Hua Wang, Xiao-Qing Xu, and Da-Hai Li, “Two-step method for lens system design”, Optics Express Vol.18, No.12, pp. 13285-13300 (2010).
69. Asari K V, “A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation”, IEEE Trans. Med. Imaging 18, pp. 345–54 (1999).
70. Laikin, Lens Design, 3rd ed. CRC press, Boca Raton, pp.393-395, (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56485-
dc.description.abstract本論文所呈現之內容為最小化共軛改變光學系統像差變化的研究結果。本研究繼承過去近百年共軛變化光學系統之研究成果並蒐集研讀豐富的研究歷程相關文獻,並整理於第一章簡介(Introduction)中。研究此以主題的過程中發現瞳上球面像差在達到像差變異最小化目標是具有重要的意義。相關研究內容也在第一章中做整理與探討。
本文第二章為理論部分,從過去最初T. Smith、H. H. Hopkins 與C. G. Wynne的研究中皆以Seidel 像差之型式表示。本文中基於物理概念輔以數學方法將三者理論融合併推導出一明確的理論。然而在擴大其適用性於各種光學設計軟體,於本章中亦將Seidel像差之形式轉化為波動光學像差表示形式同時將控制瞳上球面像差方法轉換以像散與畸變像差控制以便於設計者使用。
於本文第三章中分別以兩大類光學系統做實例驗證,其一為有限共軛成像系統,以內視鏡鏡頭為例;其二為無限共軛系統,已變焦鏡頭為例。
兩類光學系統接在實例設計驗證中成功的驗證理論的正確性,同時驗證了以像散與畸變像差控制同上球面像差方法唯一可執行之設計方法,併此結果整理於結論中。未來展望部分則接續於結論之後。
zh_TW
dc.description.abstractThe dissertation is a study result of minimizing aberration variation in conjugate change optical system. This study inherits the research results of conjugate change system in this hundred years and the footprints of these topics are collected in the introduction. To achieve the target of minimize the aberration variation in conjugate change system, the pupil spherical aberration plays a key role in this method. The studies about pupil spherical aberration relative to the conjugate change system are also collected and described in the introduction.
The theory is presented in the section followed the introduction. From the study result of T. Smith, H. H. Hopkins and C. G. Waynne, the theory is derived in Seidel aberration form. And I refer the results of three papers to derive an explicit result by mathematical method. For broadening the application of this theory, a wave aberration form is also derived. A result shown in wave aberration form is also wrote in the second section. The theory is transferred to a practical method as astigmatism and distortion controlled pupil spherical aberration minimization (ADC-PSAM) method in this section.
Two categories of the optical system are designed for verifying the theory in the third and fourth sections. The finite conjugate optical systems are the examples of endoscope design and the infinity conjugate optical system design is a zoom lens design example.
Two kinds of optical system are successfully to prove the ADC-PSAM is a practical method and the conclusion is in the fifth section of this dissertation and the future work is followed in sixth section.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:30:55Z (GMT). No. of bitstreams: 1
ntu-103-D94941010-1.pdf: 3865706 bytes, checksum: ba9dbc7cc7675a4d66e985dc314d7b72 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsCertification of committee ………………………………… i
Acknowledgements……………………………………………… ii
Chinese abstract…………………………………………… iii
English abstract………………………………………………………. iv
Index ……………………………………………………………. v
Index of figures …………………………………………….. vii
Index of tables ………………………………………………… xi
Abbreviations …………………………………………………… xii
Symbols ………………………………………………………… xiii
1.Introduction …………………………………………………… 1
1.1 History of investigation of optical conjugate change system …….….….….….….….….….….….. 1
1.2 Review of the literatures about pupil spherical aberrations …….….….….….….….….….….….….….…. 11
1.3 Motivation of this research ………………………. 20
1.4 The contribution of this research ………………. 21
1.5 Overview of the dissertation ……………………… 22
2.Theory……………………………………………………………. 23
2.1 The primary aberrations and conjugate change
revisited ….….….….….….….….….….…….... 23
2.2 Substantive the result for extending
appropriateness….….….….….….….……………… 27
2.3 The result transferred for higher practicality in
optical design software………………………..….. 29
3. Finite Conjugate system –endoscope lenses …… 33
3.1 The working distance issue of endoscope………… 33
3.2 Common endoscopic lens ………………………………. 36
3.2.1 Common endoscopic lens specifications …………… 36
3.2.2 Common endoscopic lens design process ………..… 38
3.2.3 Common endoscopic lens design result ………….… 43
3.3 Short rigid multi-element lens tube ………………. 53
3.3.1 Short rigid multi-element lens tube specification
……………………………………………………………… 53
3.3.2 Short rigid multi-element lens tube design process
……………………………………………………………… 54
3.3.3 Short rigid multi-element lens tube design results
……………………………………………………………… 57
3.4 High Magnification Endoscopic Lens ……………… 65
3.4.1 High Magnification Endoscopic Lens– ADC-PSAM and
Zoom Lens Comparison specification ……………… 65
3.4.2 High Magnification Endoscopic Lens– ADC-PSAM and
Zoom Lens Comparison design process ……………… 66
3.4.3 High Magnification Endoscopic Lens– ADC-PSAM and
Zoom Lens Comparison design result ……………… 68
3.5 Summary …………………………………………………… 78
4. Infinity Conjugate system – Zoom Lens…………… 79
4.1 The background of ADC-PSAM in zoom lens ……………79
4.2 Lens property analysis …………………………………80
4.3 The zoom lens tuning result ……………………………85
4.4 Summary ………………………………………………… 103
5. Conclusion …………………………………………………105
6. Future work ………………………………………………106
Reference………………………………………………………… 107
dc.language.isoen
dc.subject瞳上球面像差zh_TW
dc.subject成像系統zh_TW
dc.subject共軛變化zh_TW
dc.subjectimaging systemen
dc.subjectpupil spherical aberrationen
dc.subjectconjugate changeen
dc.title像差變異最小化設計方法於共軛變化成像光學系統之研究zh_TW
dc.titleStudy of Design Method of Minimizing Aberration Variation in Conjugate Change Imaging Optical Systemen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee張榮森(Rong-Seng Chang),蕭金廷(Chin-Ting Hsiao),徐進成(Jin-Cherng Hsu),田春林(Chuen-Lin Tien),林慶煌(Ching-Huang Lin)
dc.subject.keyword瞳上球面像差,共軛變化,成像系統,zh_TW
dc.subject.keywordpupil spherical aberration,conjugate change,imaging system,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved