Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡偉博(Wei-bor Tsai)
dc.contributor.authorWei-Ting Linen
dc.contributor.author林韋廷zh_TW
dc.date.accessioned2021-06-16T05:30:20Z-
dc.date.available2019-08-22
dc.date.copyright2014-08-22
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation[1] Glazer ES, Curley SA. The Ongoing History of Thermal Therapy for Cancer.
Surgical Oncology Clinics of North America. 2011;20:229-+.
[2] Lepock JR. Cellular effects of hyperthermia: relevance to the minimum dose for
thermal damage. International Journal of Hyperthermia. 2003;19:252-66.
[3] Pattani VP, Tunnell JW. Nanoparticle-mediated photothermal therapy: A
comparative study of heating for different particle types. Lasers in Surgery and
Medicine. 2012;44:675-84.
[4] Meisel P, Kocher T. Photodynamic therapy for periodontal diseases: State of the
art. Journal of Photochemistry and Photobiology B-Biology. 2005;79:159-70.
[5] Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS. Electrospinning
of nanofibers. Journal of Applied Polymer Science. 2005;96:557-69.
[6] Wang Q, Wang J, Lv G, Wang F, Zhou X, Hu J, Wang Q. Facile synthesis of
hydrophilic polypyrrole nanoparticles for photothermal cancer therapy. Journal of
Materials Science. 2014;49:3484-90.
[7] Sahu A, Choi WI, Lee JH, Tae G. Graphene oxide mediated delivery of methylene
blue for combined photodynamic and photothermal therapy. Biomaterials.
2013;34:6239-48.
[8] Shen S, Tang H, Zhang X, Ren J, Pang Z, Wang D, Gao H, Qian Y, Jiang X, Yang
W. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal
therapy with near-infrared radiation. Biomaterials. 2013;34:3150-8.
[9] Garland MJ, Cassidy CM, Woolfson D, Donnelly RF. Designing photosensitizers
for photodynamic therapy: strategies, challenges and promising developments. Future
Medicinal Chemistry. 2009;1:667-91.
[10] O'Connor AE, Gallagher WM, Byrne AT. Porphyrin and Nonporphyrin
Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic
Therapy. Photochemistry and Photobiology. 2009;85:1053-74.
[11] Aznar JA, Bonanad S, Montoro JM, Hurtado C, Cid AR, Soler MA, De Miguel A.
Influence of methylene blue photoinactivation treatment on coagulation factors from
fresh frozen plasma, cryoprecipitates and cryosupernatants. Vox Sanguinis.
2000;79:156-60.
[12] Orth K, Beck G, Genze F, Ruck A. Methylene blue mediated photodynamic
therapy in experimental colorectal tumors in mice. Journal of Photochemistry and
Photobiology B-Biology. 2000;57:186-92.
[13] Jin CS, Lovell JF, Chen J, Zheng G. Ablation of Hypoxic Tumors with 59
Dose-Equivalent Photothermal, but Not Photodynamic, Therapy Using a
Nanostructured Porphyrin Assembly. ACS Nano.7:2541-50.
[14] Trapani M, Romeo A, Parisi T, Sciortino MT, Patane S, Villari V, Mazzaglia A.
Supramolecular hybrid assemblies based on gold nanoparticles, amphiphilic
cyclodextrin and porphyrins with combined phototherapeutic action. RSC
Advances.3:5607-14.
[15] Yin Y-B, Gao H-D. Preparation, Thermostability, and Degradation In Vitro of
Polylactides Bearing Porphyrins. Journal of Macromolecular Science, Part
B.53:326-35.
[16] Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Kori T,
Ishimura K. Photostable Iodinated Silica/Porphyrin Hybrid Nanoparticles with
Heavy-Atom Effect for Wide-Field Photodynamic/Photothermal Therapy Using
Single Light Source. Advanced Functional Materials.24:503-13.
[17] Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for
nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews.
2008;60:1615-26.
[18] Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology Applications in Cancer.
Annual Review of Biomedical Engineering. 2007;9:257-88.
[19] Berr F. Photodynamic Therapy for Cholangiocarcinoma. Semin Liver Dis.
2004;24:177-87.
[20] Cho HS, Jeong DH, Cho S, Kim D, Matsuzaki Y, Tanaka K, Tsuda A, Osuka A.
Photophysical properties of porphyrin tapes. Journal of the American Chemical
Society. 2002;124:14642-54.
[21] Rusydi F, Agusta MK, Saputro AG, Kasai H. A First Principles Study on
Zinc-Porphyrin Interaction with O-2 in Zinc-Porphyrin(Oxygen) Complex. Journal of
the Physical Society of Japan. 2012;81.
[22] Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Kori T,
Ishimura K. Photostable Iodinated Silica/Porphyrin Hybrid Nanoparticles with
Heavy-Atom Effect for Wide-Field Photodynamic/Photothermal Therapy Using
Single Light Source. Advanced Functional Materials. 2014;24:503-13.
[23] Sil S, Kar M, Chakraborti AS. Studies on the interaction of hematoporphyrin
with hemoglobin. Journal of Photochemistry and Photobiology B-Biology.
1997;41:67-72.
[24] Gomes BB, Barros SBM, Andrade-Wartha ERS, Silva AMO, Silva VV,
Lanfer-Marquez UM. Bioavailability of dietary sodium copper chlorophyllin and its
effect on antioxidant defence parameters of Wistar rats. Journal of the Science of
Food and Agriculture. 2009;89:2003-10.
[25] Huang C, Soenen SJ, Rejman J, Trekker J, Liu C, Lagae L, Ceelen W, Wilhelm C, 60
Demeester J, De Smedt SC. Magnetic Electrospun Fibers for Cancer Therapy.
Advanced Functional Materials. 2012;22:2479-86.
[26] Sill TJ, von Recum HA. Electro spinning: Applications in drug delivery and
tissue engineering. Biomaterials. 2008;29:1989-2006.
[27] Taylor G. ELECTRICALLY DRIVEN JETS. Proceedings of the Royal Society
of London Series a-Mathematical and Physical Sciences. 1969;313:453-&.
[28] Shin YM, Hohman MM, Brenner MP, Rutledge GC. Experimental
characterization of electrospinning: the electrically forced jet and instabilities.
Polymer. 2001;42:9955-67.
[29] Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre
assemblies. Nanotechnology. 2006;17:R89-R106.
[30] Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous
structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials
Research. 2002;60:613-21.
[31] Doshi J, Reneker DH. ELECTROSPINNING PROCESS AND APPLICATIONS
OF ELECTROSPUN FIBERS. Journal of Electrostatics. 1995;35:151-60.
[32] Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables
on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261-72.
[33] Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer
nanofibers by electrospinning and their applications in nanocomposites. Composites
Science and Technology. 2003;63:2223-53.
[34] Yoshii E. Cytotoxic effects of acrylates and methacrylates: relationships of
monomer structures and cytotoxicity. Journal of Biomedical Materials Research.
1997;37:517-24.
[35] Vankayala R, Lin C-C, Kalluru P, Chiang C-S, Hwang KC. Gold
nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using
ultra-low doses of near infra-red light. Biomaterials. 2014;35:5527-38.
[36] Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC.
Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer
therapy. Biomaterials. 2011;32:1890-905.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56473-
dc.description.abstract溫熱療法,將癌細胞組織加熱到 41~45 oC 可以明顯增加使用放射或是化學
性治療法的效果。本論文目的是為了發展出含有光敏感分子之電紡絲應用於溫熱
至療法來治療表面癌症腫瘤,例如皮膚癌。聚左乳酸與銅葉綠素鈉所噴成的電紡
絲,可以經由照射 532 nm 的綠光雷射來加熱,達到殺死細胞的目的。
在第二部分我們將苯乙烯與銅葉綠素鈉聚合以後,得到接枝有銅葉綠素鈉單
體的聚苯乙烯,並且將此產物噴成電紡絲後來應用,之後經由 MTT assay、染
trypan blue、live/dead 三種實驗來觀察綠光雷射強度與照射時間對細胞的影響,最後達到可以控制照射綠光雷射的強度與照射時間,來達到殺死癌細胞的目的,並且不會對周遭正常細胞造成明顯損害,我們可以將此結果應用於溫熱治療法來治療大範圍表面癌症腫瘤。
zh_TW
dc.description.abstractHyperthermia, the heating of cancerous tissues to between 41 and 45 oC, has
been shown to improve the efficacy of cancer therapy when used in conjunction with
irradiation and/or chemotherapy. The objective of this study was to develop an
incorporation of electrospun sheet with photosensitizer for photodynamic therapy in
surface cancer tumor, such as skin cancer. The blend of poly-L-lactic acid (PLLA)
and chlorophyllin sodium copper (CSC) was electrospinning a sheet was developed.
The electrospun sheets could be remotely heated upon exposure to an external wave
length 532 nm green laser to kill cells.
In the second part of the study, for the purpose to produce high percentage
chlorophyllin sodium copper contain polystyrene , we used chlorophyllin sodium
copper and styrene with ATRP, and electrospinning to sheet for the hyperthermia
purpose. Then we used MTT assay、trypan blue stain and live/dead stain to observe
the effect of green laser intensity and irradiation time to the cell viability. Finally we
can achieve the purpose of killing cancer cell by control the green laser intensity and
irradiation time without hurting the normal cell around. We can use this result on the
hyperthermia of in surface cancer tumor, such as skin cancer.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:30:20Z (GMT). No. of bitstreams: 1
ntu-103-R01524081-1.pdf: 2326908 bytes, checksum: 5369865cda03a6318ccb50fd3707c522 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContent
Content ...................................................................................................................................... iv
List of Tables .......................................................................................................................... viii
List of Figures .......................................................................................................................... ix
Chapter 1 Introduction ............................................................................................................. 1
1.1 Thermal therapy for cancer ........................................................................................... 1
1.1.1 Hyperthermia ........................................................................................................... 2
1.1.2 Photothermal therapy .............................................................................................. 3
1.2 Photosensitizer ................................................................................................................ 4
1.2.1 Overview of photosensitizer ..................................................................................... 4
1.2.2 Porphyrin-based molecules ..................................................................................... 7
1.3 Electrospinning ............................................................................................................. 11
1.3.1 Overview of electrospinning ............................................................................. 11
1.3.2 Electrospinning parameters ............................................................................. 14
1.4 Motive and aim ............................................................................................................. 15
1.5 Research frame work .................................................................................................... 16
Chapter 2 Materials and Methods .......................................................................................... 17v
2.1 Materials ................................................................................................................ 17
2.1.1 Photosensitizer ....................................................................................................... 17
2.1.2 Electrospinning ...................................................................................................... 17
2.1.3 Cytotoxicity assay (3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazoliumbromide,
MTT assay) ..................................................................................................................... 17
2.1.4 Mouse fibroblast-like cell line L929 culture ......................................................... 17
2.2 Experimental instrument and materials ...................................................................... 18
2.2.1 Experimental instrument .................................................................................. 18
2.2.2 Experimental consumables............................................................................. 19
2.3 Solution formula........................................................................................................... 20
2.4 Methods ......................................................................................................................... 21
2.4.1 Porphyrin-based molecules heat efficiency comparison ...................................... 21
2.4.2 Evaluation of the cytotoxicity of CSC ................................................................... 21
2.4.3 Thermal properties of CSC .................................................................................... 22
2.4.4 Preparation of photosensitizer contained polymer solution. ................................ 22
2.4.5 Synthesis of styrene and photosensitive copolymer .............................................. 23
2.4.6 Preparation of electrospinning nanofiber sheets ................................................. 23vi
2.4.7 Structure of PLLA and PLLA/CSC fibers ............................................................ 24
2.4.8 Cytotoxic assay of PLLA/CSC electrospinning sheets ......................................... 24
2.4.9 Photothermal Conversion Experiments ................................................................ 25
2.4.10 Photothermal hyperthermia on L929 Cells ........................................................ 25
2.4.11 Photothermal hyperthermia via culturing cells on TCPS cover by PLLA/CSC
sheets ............................................................................................................................... 26
Chapter 3 Characterization and photosensity analysis of PLLA/CSC electrospinning sheets
................................................................................................................................................. 27
3.1 Porphyrin-based molecules heat efficiency comparison ............................................. 27
3.2 Synthesis of PLLA/CSC electrospun ........................................................................... 27
3.3 Structure of PLLA and PLLA/CSC fibers ................................................................... 27
3.4 Cytotoxic assay of CSC ................................................................................................. 28
3.5 Cytotoxic assay of PLLA/CSC electrospinning sheets ................................................ 28
3.6 Thermal properties of CSC ........................................................................................... 29
3.7 Thermal properties of PLLA/CSC eletrospinning nanofiber sheet ............................ 29
3.8 L929 adhesion and proliferation on PLLA/CSC fibers ............................................... 30
3.9 Irradiation effects to L929 cells ................................................................................... 30vii
3.10 Photothermal hyperthermia via culturing cells on PLLA/CSC sheets ..................... 30
3.11 Photothermal hyperthermia via culturing cells on TCPS cover by PLLA/CSC sheets
............................................................................................................................................. 31
3.12 Discussion ................................................................................................................... 32
Chapter4 Characterization and photosensity analysis of PS-CSC electrospinning sheets .. 49
4.1 Synthesis of PS-CSC ..................................................................................................... 49
4.2 Structure of PS and PS-CSC fibers ............................................................................. 49
4.3 Thermal properties of PS-CSC eletrospinning nanofiber sheet ................................. 50
4.4 Photothermal hyperthermia via culturing cells on TCPS cover by PS-CSC sheets ... 50
4.5 Discussion ..................................................................................................................... 51
Chapter 5 Conclusion ............................................................................................................. 57
Reference ................................................................................................................................ 58
dc.language.isoen
dc.subject綠光雷射zh_TW
dc.subject光熱療法zh_TW
dc.subject電訪絲zh_TW
dc.subjectelectropsunen
dc.subjectphotothermal therapiesen
dc.subjectgreen laseren
dc.title含光敏感分子之奈米電紡絲纖維應用於癌症之熱治療zh_TW
dc.titleElectrospun Nanofibers Containing photosensitive polymer for hyperthermia in Cancer Therapyen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游佳欣(Jiashing Yu),林睿哲(Jui-Che Lin)
dc.subject.keyword電訪絲,光熱療法,綠光雷射,zh_TW
dc.subject.keywordelectropsun,photothermal therapies,green laser,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved