Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56469
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉(Chuin-Shan Chen)
dc.contributor.authorHong-Jhou Cianen
dc.contributor.author錢竑州zh_TW
dc.date.accessioned2021-06-16T05:30:08Z-
dc.date.available2014-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citation[1] Jost P 1976 Economic Impact of Tribology, (Proc Mechanical Failures Prevention Group: NBS Special Pub. 423, Gaithersburg, MD) pp 117-39
[2] Bakunin V N, Suslov A Y, Kuzmina G N, Parenago O P and Topchiev A V 2004 Synthesis and Application of Inorganic Nanoparticles as Lubricant Components – a Review J. Nanopart. Res. 6 273-84
[3] Tenne R, Margulis L, Genut M and Hodes G 1992 Polyhedral and Cylindrical Structures of Tungsten Disulfide Nature 360 444-6
[4] Feldman Y, Wasserman E, Srolovitz D J and Tenne R 1995 High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes Science 267 222-5
[5] Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R and Tenne R 1997 Hollow nanoparticles of WS2 as potential solid-state lubricants Nature 387 791-3
[6] Rapoport L, Feldman Y, Homyonfer M, Cohen H, Sloan J, Hutchison J L and Tenne R 1999 Inorganic fullerene-like material as additives to lubricants: structure–function relationship Wear 225-229 975-82
[7] Cizaire L, Vacher B, Le Mogne T, Martin J M, Rapoport L, Margolin A and Tenne R 2002 Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles Surf. Coat. Tech. 160 282-7
[8] Rapoport L, Leshchinsky V, Lvovsky M, Lapsker I, Volovik Y, Feldman Y, Popovitz-Biro R and Tenne R 2003 Superior tribological properties of powder materials with solid lubricant nanoparticles Wear 255 794-800
[9] Rapoport L, Fleischer N and Tenne R 2005 Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites J. Mater. Chem. 15 1782-8
[10] Rapoport L, Nepomnyashchy O, Lapsker I, Verdyan A, Soifer Y, Popovitz-Biro R and Tenne R 2005 Friction and wear of fullerene-like WS2 under severe contact conditions: friction of ceramic materials Tribol. Lett. 19 143-9
[11] Tenne R, Remškar M, Enyashin A and Seifert G 2008 Inorganic Nanotubes and Fullerene-Like Structures (IF) (Springer Berlin Heidelberg)
[12] Rosentsveig R, Gorodnev A, Feuerstein N, Friedman H, Zak A, Fleischer N, Tannous J, Dassenoy F and Tenne R 2009 Fullerene-like MoS2 Nanoparticles and Their Tribological Behavior Tribol. Lett. 36 175-82
[13] Tannous J, Dassenoy F, Lahouij I, Mogne T, Vacher B, Bruhacs A and Tremel W 2010 Understanding the Tribochemical Mechanisms of IF-MoS2 Nanoparticles Under Boundary Lubrication Tribol. Lett. 41 55-64
[14] Tevet O, Goldbart O, Cohen S R, Rosentsveig R, Popovitz-Biro R, Wagner H D and Tenne R 2010 Nanocompression of individual multilayered polyhedral nanoparticles Nanotechnology 21 365705
[15] Tevet O, Von-Huth P, Popovitz-Biro R, Rosentsveig R, Wagner H D and Tenne R 2011 Friction mechanism of individual multilayered nanoparticles Proc. Natl. Acad. Sci. U.S.A. 108 19901-6
[16] Enyashin A N, Gemming S, Bar-Sadan M, Popovitz-Biro R, Hong S Y, Prior Y, Tenne R and Seifert G 2007 Structure and stability of molybdenum sulfide fullerenes Angew. Chem. Int. Ed. 46 623-7
[17] Tenne R and Redlich M 2010 Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes Chem. Soc. Rev. 39 1423-34
[18] Yadgarov L, Rosentsveig R, Leitus G, Albu-Yaron A, Moshkovich A, Perfilyev V, Vasic R, Frenkel A I, Enyashin A N, Seifert G, Rapoport L and Tenne R 2012 Controlled doping of MS2 (M=W, Mo) nanotubes and fullerene-like nanoparticles Angew. Chem. Int. Ed. 51 1148-51
[19] Tenne R, Rosentsveig R and Zak A 2013 Inorganic nanotubes and fullerene-like nanoparticles: Synthesis, mechanical properties, and applications Phys. Status Solidi A 210 2253-8
[20] Field S K, Jarratt M and Teer D G 2004 Tribological properties of graphite-like and diamond-like carbon coatings Tribol. Int. 37 949-56
[21] Berman D, Erdemir A and Sumant A V 2013 Few layer graphene to reduce wear and friction on sliding steel surfaces Carbon 54 454-9
[22] Berman D, Erdemir A and Sumant A V 2013 Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen Carbon 59 167-75
[23] Scharf T W and Prasad S V 2013 Solid lubricants: a review J. Mater. Sci. 48 511-31
[24] Muratore C, Bultman J E, Aouadi S M and Voevodin A A 2011 In situ Raman spectroscopy for examination of high temperature tribological processes Wear 270 140-5
[25] Zabinski J S, Donley M S and Prasad S V 1994 Synthesis and Characterization of Tungsten Disulfide Films Grown by Pulsed-Laser Deposition J. Mater. Sci. 29 4834-9
[26] Prasad S V and Zabinski J S 1993 Tribology of Tungsten Disulfide (WS2) - Characterization of Wear-Induced Transfer Films J. Mater. Sci. Lett. 12 1413-5
[27] Prasad S V, Zabinski J S and Mcdevitt N T 1995 Friction Behavior of Pulsed-Laser Deposited Tungsten Disulfide Films Tribol. T. 38 57-62
[28] Chhowalla M and Amaratunga G A 2000 Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear Nature 407 164-7
[29] Hirata A, Igarashi M and Kaito T 2004 Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles Tribol. Int. 37 899-905
[30] Joly-Pottuz L, Matsumoto N, Kinoshita H, Vacher B, Belin M, Montagnac G, Martin J M and Ohmae N 2008 Diamond-derived carbon onions as lubricant additives Tribol. Int. 41 69-78
[31] Joly-Pottuz L, Dassenoy F, Belin M, Vacher B, Martin J M and Fleischer N 2005 Ultralow-friction and wear properties of IF-WS2 under boundary lubrication Tribol. Lett. 18 477-85
[32] Hu J J and Zabinski J S 2005 Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM) Tribol. Lett. 18 173-80
[33] Scharf T W, Kotula P G and Prasad S V 2010 Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings Acta. Mater. 58 4100-9
[34] Wahl K J, Dunn D N and Singer I L 1999 Wear behavior of Pb–Mo–S solid lubricating coatings Wear 230 175-83
[35] Yang H B, Liu S K, Lil J X, Li M H, Peng G and Zou G T 2006 Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance Nanotechnology 17 1512-9
[36] Lahouij I, Dassenoy F, de Knoop L, Martin J M and Vacher B 2011 In Situ TEM Observation of the Behavior of an Individual Fullerene-Like MoS2 Nanoparticle in a Dynamic Contact Tribol. Lett. 42 133-40
[37] Lahouij I, Dassenoy F, Vacher B and Martin J-M 2011 Real Time TEM Imaging of Compression and Shear of Single Fullerene-Like MoS2 Nanoparticle Tribol. Lett. 45 131-41
[38] Jelenc J and Remskar M 2012 Friction on a single MoS2 nanotube Nanoscale Res. Lett. 7 208
[39] Lahouij I, Vacher B and Dassenoy F 2014 Direct observation by in situ transmission electron microscopy of the behaviour of IF-MoS2 nanoparticles during sliding tests: influence of the crystal structure Lubr. Sci. 26 163-73
[40] Liang T, Phillpot S R and Sinnott S B 2009 Parametrization of a reactive many-body potential for Mo-S systems Phys. Rev. B 79 245110
[41] Liang T, Phillpot S R and Sinnott S B 2012 Erratum: Parametrization of a reactive many-body potential for Mo-S systems [Phys. Rev. B 79, 245110 (2009)] Phys. Rev. B 85 199903
[42] Lahouij I, Bucholz E W, Vacher B, Sinnott S B, Martin J M and Dassenoy F 2012 Lubrication mechanisms of hollow-core inorganic fullerene-like nanoparticles: coupling experimental and computational works Nanotechnology 23 375701
[43] Bucholz E W and Sinnott S B 2013 Structural effects on mechanical response of MoS2 nanostructures during compression J. Appl. Phys. 114 034308
[44] Bucholz E W and Sinnott S B 2012 Mechanical behavior of MoS2 nanotubes under compression, tension, and torsion from molecular dynamics simulations J. Appl. Phys. 112 123510
[45] Stewart J A and Spearot D E 2013 Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2) Model. Simul. Mater. Sc. 21 045003
[46] Jiang J W, Park H S and Rabczuk T 2013 Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity J. Appl. Phys. 114 064307
[47] Johnson K, Kendall K and Roberts A 1971 Surface energy and the contact of elastic solids Proc. R. Soc. A 324 301-13
[48] Krijt S, Dominik C and Tielens A G G M 2014 Rolling friction of adhesive microspheres J. Phys. D: Appl. Phys. 47 175302
[49] Dominik C and Tielens A G G M 1995 Resistance to rolling in the adhesive contact of two elastic spheres Philos. Mag. A 72 783-803
[50] Frenkel D and Smit B 2001 Understanding molecular simulation: from algorithms to applications (Academic press)
[51] Plimpton S 1995 Fast Parallel Algorithms for Short-Range Molecular-Dynamics J. Comput. Phys. 117 1-19 Software available at http://lammps.sandia.gov
[52] Abell G C 1985 Empirical chemical pseudopotential theory of molecular and metallic bonding Phys. Rev. B Condens. Matter. 31 6184-96
[53] Tersoff J 1986 New empirical model for the structural properties of silicon Phys. Rev. Lett. 56 632-5
[54] Tersoff J 1988 Empirical Interatomic Potential for Carbon, with Applications to Amorphous-Carbon Phys. Rev. Lett. 61 2879-82
[55] Tersoff J 1988 New empirical approach for the structure and energy of covalent systems Phys. Rev. B Condens. Matter 37 6991-7000
[56] Tersoff J 1988 Empirical interatomic potential for silicon with improved elastic properties Phys. Rev. B Condens. Matter 38 9902-5
[57] Tersoff J 1989 Modeling solid-state chemistry: Interatomic potentials for multicomponent systems Phys. Rev. B Condens. Matter 39 5566-8
[58] Brenner D W 1990 Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films Phys. Rev. B 42 9458-71
[59] Brenner D W 1992 Erratum: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films Phys. Rev. B 46 1948
[60] Stuart S J, Tutein A B and Harrison J A 2000 A reactive potential for hydrocarbons with intermolecular interactions J. Chem. Phys. 112 6472-86
[61] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons J. Phys. Condens Matter. 14 783-802
[62] Stone T W, Horstemeyer M F, Hammi Y and Gullett P M 2008 Contact and friction of single crystal nickel nanoparticles using molecular dynamics Acta. Mater. 56 3577-84
[63] Storakers B, Biwa S and Larsson P-L 1997 Similarity analysis of inelastic contact Int. J. Solids Struct. 34 3061-83
[64] Mo Y, Turner K T and Szlufarska I 2009 Friction laws at the nanoscale Nature 457 1116-9
[65] Amontons G 1699 De la resistance causee dans les machines Mem. Acad. R. A 275 - 82
[66] Joly-Pottuz L, Bucholz E W, Matsumoto N, Phillpot S R, Sinnott S B, Ohmae N and Martin J M 2010 Friction Properties of Carbon Nano-Onions from Experiment and Computer Simulations Tribol. Lett. 37 75-81
[67] Bucholz E W, Phillpot S R and Sinnott S B 2012 Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions Comp. Mater. Sci. 54 91-6
[68] Bucholz E W and Sinnott S B 2013 Computational investigation of the mechanical and tribological responses of amorphous carbon nanoparticles J. Appl. Phys. 113 073509
[69] Zheng X, Zhu H T, Kosasih B and Tieu A K 2013 A molecular dynamics simulation of boundary lubrication: The effect of n-alkanes chain length and normal load Wear 301 62-9
[70] Barry P R, Chiu P Y, Perry S S, Sawyer W G, Phillpot S R and Sinnott S B 2009 The effect of normal load on polytetrafluoroethylene tribology J. Phys. Condens Matter. 21 144201
[71] Allen M P and Tildesley D J 1989 Computer Simulation of Liquids (Oxford university press)
[72] Robbins M O and Muser M H 2000 Computer simulations of friction, lubrication and wear (Handbook of Modern Tribology) (Boca Raton, FL: CRC Press)
[73] Vanossi A and Braun O M 2007 Driven dynamics of simplified tribological models J. Phys.Condens. Mat. 19
[74] Mate C M, McClelland G M, Erlandsson R and Chiang S 1987 Atomic-scale friction of a tungsten tip on a graphite surface Phys. Rev. Lett. 59 1942-5
[75] Fujisawa S, Kishi E, Sugawara Y and Morita S 1995 Load dependence of two-dimensional atomic-scale friction Phys. Rev. B Condens. Matter. 52 5302-5
[76] Liang T, Sawyer W G, Perry S S, Sinnott S B and Phillpot S R 2008 First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3 Phys. Rev. B 77 104105
[77] Smith G, Modine N, Waghmare U and Kaxiras E 1998 First-principles study of static nanoscale friction between MoO3 and MoS2 J. Comput. Aided Mater. Des. 5 61-71
[78] Ding W, Howard A J, Peri M D M and Cetinkaya C 2007 Rolling resistance moment of microspheres on surfaces: contact measurements Philos. Mag. 87 5685-96
[79] Sumer B and Sitti M 2008 Rolling and Spinning Friction Characterization of Fine Particles Using Lateral Force Microscopy Based Contact Pushing J. Adhes. Sci. Technol. 22 481-506
[80] Griffith A A 1921 The Phenomena of Rupture and Flow in Solids Philos. T. R. Soc. London Ser. A: Math. Phys. Eng. Sci. 221 163-98
[81] Jin Y and Yuan F G 2005 Nanoscopic modeling of fracture of 2D graphene systems J. Nanosci. Nanotechnol. 5 601-8
[82] Tsai J L, Tzeng S H and Tzou Y J 2010 Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics Int. J. Solids Struct. 47 503-9
[83] Irwin G R 1957 Analysis of stresses and strains near the end of a crack traversing a plate J. appl. Mech. 24 361-4
[84] Shewchuk J R 1996 Applied Computational Geometry Towards Geometric Engineering, ed M Lin and D Manocha (Springer Berlin Heidelberg) pp 203-22
[85] Baskes M I 1992 Modified embedded-atom potentials for cubic materials and impurities Phys. Rev. B Condens. Matter 46 2727-42
[86] Alexander S 2010 Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 015012 Software available at http://ovito.org/
[87] Gundlach B, Kilias S, Beitz E and Blum J 2011 Micrometer-sized ice particles for planetary-science experiments – I. Preparation, critical rolling friction force, and specific surface energy Icarus 214 717-23
[88] Heim L O, Blum J, Preuss M and Butt H J 1999 Adhesion and friction forces between spherical micrometer-sized particles Phys. Rev. Lett. 83 3328-31
[89] Blum J and Wurm G 2000 Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates Icarus 143 138-46
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56469-
dc.description.abstract奈米顆粒為直徑數十奈米至數百奈米的微小顆粒,如將奈米顆粒加入至潤滑劑中作為添加物時,可有效地提高產能與器械的耐久性,因此奈米顆粒的磨潤性質以及奈米顆粒何以能夠帶來如此優異的潤滑效益,向來是學者們不斷探討的議題。其中,層狀結構的類富勒烯奈米顆粒(inorganic fullerene-like nanoparticle,IF-NP)在低接觸應力如有產生側向位移,可以觀察到滑動與滾動等不同的機制。但在奈米尺度下,滾動行為是否能為摩擦介面帶來優異的潤滑效果,直至今日仍缺乏有力的證據。同時,當顆粒在黏著接觸下,黏著遲滯效應扮演著重要的角色,但此部分在奈米尺度下對奈米顆粒的影響尚未釐清。
故本研究的目的有二,第一為利用分子動力學模擬,探討二硫化鉬(MoS2)類富勒烯奈米顆粒於微觀尺度下的摩擦機制,以闡明在奈米尺度下的滾動機制實為重要的潤滑機制之一,同時探討影響其滾動的微觀機制,希冀能藉此提供一設計準則,作為未來設計具有高度潤滑效果的奈米顆粒的基礎;第二為指出黏著遲滯效應在奈米顆粒處於臨界滾動狀態時的影響,並將分子動力學模擬的結果與連體理論比較。
到目前為止,鮮少有能完整描述Mo-S系統之勢能函數的分子動力學模擬軟體,故本研究將一描述Mo-S之共價鍵系統的經驗勢能函數實作於分子動力模擬軟體(LAMMPS)中。因LAMMPS為目前世界上普遍使用之分子動力學模擬軟體,故本研究之實作將有利於後續學者們在Mo-S系統上的研究。本研究的模擬結果證實了奈米顆粒的滾動行為能夠帶來高達30%的磨潤效益,此結果證明了奈米顆粒的滾動行為確實為提升介面潤滑重要的因素之一。此外,本研究發現其奈米顆粒的微觀滾動機制有一定程度的重複性,故將其機制歸類為兩組不同的滾動模式(Patterns)。
黏著遲滯(adhesion hysteresis)效應是影響奈米顆粒於微觀尺度下滾動機制的重要因素。故本研究延伸連體理論的觀點,在原子尺度下解釋黏著遲滯效應對奈米顆粒滾動行為的影響。本研究參考荷蘭學者Krijt所提出的滾動摩擦理論,計算奈米顆粒欲滾動的瞬間所造成的能量釋放率差值變化,此差值即為黏著遲滯效應。結果指出,能量釋放率差值會在欲滾動的瞬間出現高峰,亦與理論所預測的趨勢相同。因此,本研究指出此臨界的能量釋放率差值為奈米顆粒臨界滾動狀態下的材料性質,並且可以利用此性質作為判斷奈米顆粒是否容易滾動的依據。
本研究利用分子動力學模擬探討奈米顆粒的微觀磨潤機制,並將Mo-S系統之勢能函數於分子動力模擬軟體(LAMMPS)中實作。本研究證實了奈米顆粒滾動行為確實為重要之潤滑機制之一,並且發現其一致的微觀滾動機制。本研究亦發現黏著遲滯的效應如何體現在奈米顆粒的臨界滾動行為中。
zh_TW
dc.description.abstractNanoparticle (NP) is a nano-scale material with diameters ranging from tens to hundreds of nanometer. Treating this nanoparticle as lubricant additives can further improve mechanical performance and durability. Hence the tribological properties of nanoparticle have gained much attention and the lubrication mechanisms of nanoparticle have been considered as an important issue. The single inorganic fullerene-like nanoparticle (IF-NP) would display rolling and sliding behavior when nanoparticle is subjected to lateral displacement under low contact stress. However, it has not been revealed that whether the rolling behavior of IF-NP is one of the significant lubrication mechanisms. Meanwhile, under contact stress, adhesion hysteresis play an important role in the rolling mechanism. However, it is not clear whether such effect influence NP rolling mechanism.
The objectives of this study are twofold, first to study the friction coefficients and tribological mechanisms of a single molybdenum disulfide (MoS2) IF-NP using molecular dynamics simulation. It has been interpreted in this work that the rolling behavior is indeed a remarkable lubrication mechanism. Through these results, we can provide a guideline which will enable the design of NP with high performance of lubrication. The second objective is to address the effect of adhesion hysteresis on the onset of the rolling of nanoparticles. The results from the atomistic studies are compared with analysis from the elasticity theory.
Until now, there are few appropriate molecular dynamics simulator which can describe the Mo-S covalent bond system. In the present study, a covalent bond potential describing the interaction between molybdenum and sulfur atoms has been implemented in LAMMPS. This implementation will benefit researchers to undertake the future studies in Mo-S system. It has been reported that rolling behavior could result in significant lubricant effects. From our results, the rolling behavior could reduce the friction for about 30%, which demonstrates that the rolling behavior is a significant lubricant mechanism for MoS2 nanoparticle. In addition, we observed the repeating behaviors when nanoparticle is rolling and categorized these behaviors into two rolling patterns.
The adhesion hysteresis plays an important role in the rolling mechanism. We therefore extended the continuum theory to atomic scale for interpreting the influence of adhesion hysteresis within rolling behavior. Present study indicates that the adhesion hysteresis represented by a difference of energy release rates, is apparent at the onset of rolling. The peak value of difference of energy release rates occurs when nanoparticle starts to roll. This result has agreed well with the rolling friction theory proposed by Krijt. Therefore, we conclude that the critical difference of energy release rates is a material property for the onset of rolling. This property can be used to determine whether a given nanoparticle is easy to roll.
From our study, the tribological mechanisms have been investigated using molecular dynamics simulation. A Mo-S system bond-order potential has been implemented in LAMMPS. We conclude that the rolling behavior is certainly an important lubricant mechanism, which has been demonstrated in present study. We also observe repeating behaviors when MoS2 nanoparticle is rolling. Moreover, how the adhesion hysteresis influences the onset of rolling of nanoparticle has been revealed as well.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:30:08Z (GMT). No. of bitstreams: 1
ntu-103-R01521607-1.pdf: 4826827 bytes, checksum: 032b3bfeace17a5593428fc9d56cefa1 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 8
1.3 論文架構 9
第二章 類富勒烯奈米顆粒的微觀磨潤機制 10
2.1 勢能函數 10
2.1.1 用來描述Mo-S系統的Reactive Many-body Bond-order Potential 10
2.1.2 勢能函數的驗證 14
2.2 定義與計算正向力與摩擦力 17
2.3 摩擦係數與滾動指數計算 18
2.4 模擬系統設置 20
2.4.1 模型設置 20
2.4.2 系統控溫 21
2.4.3 模擬步驟 21
2.5 模擬實作 22
2.5.1 模擬實作軟體 22
2.5.2 環境參數設置 23
2.5.3 模擬流程的實作 24
2.6 結果與討論 27
2.6.1 模擬結果 27
2.6.2 二硫化鉬奈米顆粒的磨潤機制與整體性質 32
2.6.3 因滾動機制帶來的潤滑效益 33
2.6.4 奈米顆粒的滾滑行為與接觸面積的關係 36
2.6.5 奈米顆粒的stick-slip行為 41
2.7 結語 44
第三章 以黏著遲滯解釋奈米顆粒臨界滾動行為的探討 47
3.1 黏著接觸下的滾動摩擦預測理論 47
3.2 能量釋放率在離散系統下的計算方法 49
3.3 勢能函數 51
3.4 模擬系統設置 53
3.4.1 模型設置以及系統控溫 53
3.4.2 模擬步驟 53
3.5 結果與討論 55
3.5.1 奈米顆粒臨界滾動狀態下的黏著遲滯效應 55
3.5.2 半徑以及滾動摩擦與滾動位移的關係 59
3.6 結語 60
第四章 結論與未來研究方向 61
4.1 結論 61
4.2 未來研究方向 62
參考文獻 64
dc.language.isozh-TW
dc.title以分子動力模擬探討奈米顆粒的微觀磨潤機制zh_TW
dc.titleInvestigation of Tribological Mechanisms on Nanoparticle Using Molecular Dynamics Simulationen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭友仁(Yeau-Ren Jeng),莊嘉揚(Jia-Yang Juang)
dc.subject.keyword奈米磨潤學,二硫化鉬奈米顆粒,黏著遲滯,分子動力學模擬,zh_TW
dc.subject.keywordNano tribology,MoS2 nanoparticle,Adhesion hysteresis,Molecular dynamics,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved