Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56465
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章教授
dc.contributor.authorHorng-Cherng Laien
dc.contributor.author賴鴻成zh_TW
dc.date.accessioned2021-06-16T05:29:55Z-
dc.date.available2019-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citationAdamo, F., De Capua, C., Filianoti, P., Lanzolla, A.M.L., Morello, R., 2014. A coastal erosion model to predict shoreline changes. Measurement, 47: 734-740.
Akpınar, A., Ozger, M., Komurcu, M., 2014. Prediction of wave parameters by using fuzzy inference system and the parametric models along the south coasts of the Black Sea. J Mar Sci Technol, 19(1): 1-14.
Alizadeh, G., Vafakhah, M., Azarmsa, A., Torabi, M., 2011. Using an artificial neural network to model monthly shoreline variations. IEEE: 4893-4896.
Boak, E.H., Turner, I.L., 2005. Shoreline Definition and Detection: A Review. Journal of Coastal Research, 21(4): 688-703.
Bruun, P., 1954. Coast erosion and the development of beach profiles. Beach Erosion Board Technical Memorandum 44. U.S. Army Corps of Engineers.
Chaneau, J.L., Gunaratne, M., Altschaeffl, A.G., 1987. An Application of Type-2 Sets to Decision Making in Engineering. In Analysis of Fuzzy Information. II: Artificial Intelligence and Decision Systems (Bezdek J., Ed.). CRC. Boca Raton, FL.
Chang, F.-J., Chang, L.-C., Huang, H.-L., 2002. Real Time Recurrent Neural Network for Streamflow Forecasting. Hydrological Processes, 16(13): 2577-2588.
Chang, F.-J., Chang, Y.-T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources, 29(1): 1-10.
Chang, F.-J., Chen, Y.-C., 2003. Estuary Water-Stage Forecasting by Using Radial Basis Function Neural Network. Journal of Hydrology, 270: 158-165.
Chang, F.-J., Hu, H.-F., Chen, Y.-C., 2001. Counterpropagation fuzzy-neural network for streamflow reconstructing. Hydrological Processes, 15: 219-232.
Chang, F.-J., Tseng, K.-Y., Chaves, P., 2007. Shared near neighbours neural network model: a debris flow warning system. Hydrological Processes, 21: 1968-1976.
Chang, H.-K., Chien, W.-A., 2006. A fuzzy–neural hybrid system of simulating typhoon waves. Coastal Engineering, 53(9): 737-748.
Chang, Y.-T., Chang, L.-C., Chang, F.-J., 2005. Intelligent control for modeling of real time reservoir operation - Part Ⅱ:ANN with operating rule curves. Hydrological Processes, 19: 1431-1444.
Chen, S.-H., Lin, Y.-H., Chang, L.-C., Chang, F.-J., 2006. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrological Processes, 20(7): 1525-1540.
Cheng, C., 1999. Fuzzy optimal model for the flood control system of the upper and middle reaches of the Yangtze River. Hydrological Sciences Journal, 44(4): 573-582.
Chiang, Y.-M., Chang, F.-J., Jou, B.J.-D., Lin, P.-F., 2007. Dynamic ANN for Precipitation Estimation and Forecasting from Radar Observations. Journal of Hydrology, 334 250-261.
Chiang, Y.-M., Hsu, K.-L., Chang, F.-J., Hong, Y., Sorooshian, S., 2007. Merging multiple precipitation sources for flash flood forecasting. Journal of Hydrology, 340(3-4): 183-196.
Chiu, S.L., 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2(3): 267-278.
Davidson, M.A., Splinter, K.D., Turner, I.L., 2013. A simple equilibrium model for predicting shoreline change. Coastal Engineering, 73: 191-202.
Davidson, M.A., Turner, I.L., 2009. A behavioral template beach profile model for predicting seasonal to interannual shoreline evolution. Journal of Geophysical Research, 114: F01020.
Dean, R.G., 1977. Equilibrium Beach Profiles: U.S. Atlantic and Gulf Coasts. Center for Apllied Coastal Research.
Dean, R.G., 1990. Equilibrium Beach Profiles: Characteristics and Applications. Coastal and Oceanographic Engineering Department, UFL/COEL-90/001.
Deo, M.C., 2010. Artificial neural networks in coastal and ocean engineering. Indian Journal of Geo-Marine Sciences, 39(4): 589-596.
Dolan, R., Fenster, M.S., Holme, S.J., 1991. Temporal Analysis of Shoreline Recession and Accretion. Journal of Coastal Research, 7(3): 723-744.
Dolan, R., Fenster, M.S., Holme, S.J., 1992. Spatial Analysis of Shoreline Recession and Accretion. Journal of Coastal Research, 8(2): 263-285.
Dong, P., Chen, H., 1999. A probability method for predicting time-dependent long-term shoreline erosion. Coastal Engineering, 36: 243–261.
Douglas, B.C., Crowell, M., 2000. Long-term Shoreline Position Prediction and Error Propagation. Journal of Coastal Research, 16(1): 145-152.
Fenster, M.S., Dolan, R., Morton, R.A., 2001. Coastal Storms and Shoreline Change: Signal or Noise? Journal of Coastal Research, 17(3): 714-720.
Firat, M., 2007. Artificial Intelligence Techniques for river flow forecasting in the Seyhan River Catchment, Turkey. Hydrology and Earth System Sciences Discussions, 4: S1136–S1139.
Guner, H.A.A., Yuksel, Y., Cevik, E.O., 2013. Longshore Sediment Transport—Field Data and Estimations Using Neural Networks, Numerical Model, and Empirical Models. Journal of Coastal Research, 287: 311-324.
Galgano, F.A., Douglas, B.C., 2000. Shoreline Position Prediction: Methods and Errors. Environmental Geosciences, 7(1): 23-31.
Gent, M.R.A.v., Boogaard, H.F.P.v.d., Pozueta, B., Medina, J.R., 2007. Neural network modeling of waveovertopping at coastal structures. Coastal Engineering, 54: 586–593.
Genz, A.S., Fletcher, C.H., Dunn, R.A., Frazer, L.N., Rooney, J.J., 2007. The Predictive Accuracy of Shoreline Change Rate Methods and Alongshore Beach Variation on Maui, Hawaii. Journal of Coastal Research, 231: 87-105.
Gu‥ner, H.A.A., Yu‥ksel, Y., evik, E.O.z.C., 2011. Longshore Sediment Transport—Field Data and Estimations Using Neural Networks, Numerical Models, and Empirical Models. Journal of Coastal Research, Cust # JCOASTRES-D-11-00074.
Guishan, Y., 1995. Relative Sea Level Rise and Its Effects on Environment and Resources in China's Coastal Areas. Chinese Geographical Science, 5(2): 104-115.
Hajek, P., Olej, V., 2013. Prediction of Air Quality Indices by Neural Networks and Fuzzy Inference Systems – The Case of Pardubice Microregion. In: Iliadis, L., Papadopoulos, H., Jayne, C. (Eds.), Engineering Applications of Neural Networks. Communications in Computer and Information Science. Springer Berlin Heidelberg, pp. 302-312.
Ham, F., Kostanic, I., 2000. Principles of Neurocomputing for Science and Engineering. McGraw-Hill Higher Education, 672 pp.
Hasebe, M., Nagayama, Y., 2002. Reservoir operation using the neural network and fuzzy systems for dam control and operation support. Advances in Engineering Software, 33(5): 245-260.
Hecht-Nielsen, R., 1987. Counterpropagation network. Applied Optics, 26(23): 4979-4984.
Honeycutt, M.G., Crowell, M., Douglas, B.C., 2001. Shoreline-Position Forecasting: Impact of Storms, Rate-Calculation Methodologies, and Temporal Scales. Journal of Coastal Research, 17(3): 721-730.
Hopfield, J.J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci., 79(8): 2554-2558.
Huang, W., Murray, C., Kraus, N., Rosati, J., 2003. Development of a regional neural network for coastal water level predictions. Ocean Engineering, 30(17): 2275-2295.
Jang, J.S.R., 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. on System. Man and Cyber., 23(3): 665-685.
Jayaram, M.A., Marad, N., 2012. Fuzzy Inference Systems for Crop Yield Prediction. jisys, 21(4): 363-372.
Johnson, G.P., Lin, F.C., 1995. Hurricane tracking via backpropagation neural network, Neural Networks, 1995. Proceedings., IEEE International Conference on, pp. 1103-1106 vol.2.
Kerh, T., Hsu, G.S., Gunaratnam, D., 2009. Forecasting of Nonlinear Shoreline Variation Based on Aerial Survey Map by Neural NetworkApproach. International Journal of Nonlinear Sciences & Numerical Simulation, 10(9): 1211-1221.
Kingston, K.S., Davidson, M.A., 1999. Artificial Neural Network Model of Sand Bar Location for a Macro-Tidal Beach, Perranporth, UK’, IAHR Symposium on River Coastal and Estuarine Modelling, Genoa, Italy, pp. 227-236.
Lallahem, S., Mania, J., Hani, A., Najjar, Y., 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307(1–4): 92-111.
Larson, M., Kraus, N.C., 1989. Prediction of beach fill response to varying wave and water level, Proc. Coastal Zone '89. ASCE, pp. 607-621.
Leahy, P., Kiely, G., Corcoran, G., 2008. Structural optimisation and input selection of an artificial neural network for river level prediction. Journal of Hydrology, 355(1–4): 192-201.
Lee, C.C., 1990. Fuzzy Logic in Control Systems: Fuzzy Logic Controller - Part I and Part II. IEEE Transactions on Systems, Man and Cybernetics, 20(2): 404-435.
Lee, T.-L., 2004. Back-propagation neural network for long-term tidal predictions. Ocean Engineering, 31: 225-238.
Lin, L.-C., Chang, H.-K., 2008. An Adaptive Nneuro-Fuzzy Inference System for Sea Level Prediction Cconsidering Ttide-Generating Forces and Ooceanic Tthermal Expansion. Terr. Atmos. Ocean. Sci., 19(1-2): 163-172.
Luo, S., Wang, H., Cai, F., 2013. An integrated risk assessment of coastal erosion based on fuzzy set theory along Fujian coast, southeast China. Ocean & Coastal Management, 84(0): 68-76.
Ma, G., Liu, S., 2003. A Forecasting Model of Delta Evolution Using Artificial Neural Networks International Conference on Estuaries and Coasts, Hangzhou, China, pp. 841-846.
McCulloch, W.S., Pitts, W., 1943. A logical calculus of the idea immanent in nervous activity. B. Math. Biophys, 5: 115-133.
Mendel, J.M., 1995. Fuzzy Logic Systems for Engineering: A Tutorial. Proceedings of the IEEE, 83(3).
Mendel, J.M., 2000. Uncertainty, fuzzy logic, and signal processing. Signal Processing, 80(6): 913-933.
Miller, J.K., Dean, R.G., 2004. A simple new shoreline change model. Coastal Engineering, 51(7): 531-556.
Munakata, T., Jani, Y., 1994. Fuzzy Systems: An Overview. Communications of the ACM, 37(3): 69-76.
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I -- A discussion of principles. Journal of Hydrology, 10(3): 282-290.
Nguyen, T., Peterson, J., Gordon-Brown, L., Wheeler, P., 2008. Coastal Changes Predictive Modelling: A Fuzzy Set Approach. Proceeding of World Academy of Science, Engineering and Technology, 36: 1299-1304.
Nie, J., Linkens, D.A., 1994. Fast self-learning multivariable fuzzy controllers constructed from a modified CPN network. Int. J. Control, 60: 369-393.
Ozolcer, İ.H., 2008. An experimental study on geometric characteristics of beach erosion profiles. Ocean Engineering, 35(1): 17-27.
Ozyurt, N.N., Sezer, E.A., 2012. Daily streamflow prediction by ANFIS modeling: Application to Lower Zamanti Karst Basin, Turkey. Journal of Intelligent and Fuzzy Systems, 23(6): 305-311.
Ponnambalam, K., Karray, F., Mousavi, S.J., 2003. Minimizing variance of reservoir systems operations benefits using soft computing tools. Fuzzy Sets and Systems, 139(2): 451-461.
Ruggiero, P., Buijsman, M., Kaminsky, G.M., Gelfenbaum, G., 2010. Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change. Marine Geology, 273(1–4): 127-140.
Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning represnetations by back-propagating errors. Nature, 323: 533-536.
Sajikumar, N., Thandaveswara, B.S., 1999. A non-linear rainfall-runoff model using an artificial network. Journal of Hydrology, 216(1): 32-55.
Shen-Hsien Chen, Y.-H.L., Li-Chiu Chang, Fi-John Chang, 2006. The Strategy of Building a Flood Forecast Model by Neuro-Fuzzy Network. Hydrological Processes, 20(7): 1525-1540.
Shu, C., Ouarda, T.B.M.J., 2008. Regional flood frequency analysis at engaged sites using the adaptive neuro-fuzzy inference system. Journal of Hydrology, 349: 31-43.
Singh, A.K., Deo, M.C., Kumar, V.S., 2008. Prediction of littoral drift with artificial neural networks. Hydrology and Earth System Sciences, 12: 267-275.
Thirumalaiah, K., Deo, M.C., 2000. Hydrological forecasting using neural networks. Journal of Hydrologic Engineering, 5(2): 180-189.
Xue, X., Yang, X., 2013. Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction. Nat Hazards, 67(2): 901-917.
Yang, H.-C., Chang, F.-J., 2005. Modeling combined open channel flow by artificial neural networks. Hydrological Processes, 19(18): 3747-3762.
Yates, M.L., Guza, R.T., O’Reilly, W.C., Hansen, J.E., Barnard, P.L., 2011. Equilibrium shoreline response of a high wave energy beach. Journal of Geophysical Research 116: C04014.
Zadeh, L.A., 1965. Fuzzy Sets. Information and Control. 8: 338-353.
Zadeh, L.A., 1973. Outline of a New Approach to the Analysis of Complex System and Decision Processes. IEEE Transactions on Systems, Man and Cybernetics, SMC-3(1): 28-44.
Zhu, M.L., Fujita, M., 1994. Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge. Journal of hydroscience and hydraulic engineering, 12(2): 131-141.
內政部, 1984. 台灣沿海地區自然環境保護計畫(I)-淡水、蘭陽、蘇花、花東、彰雲嘉、東北角、墾丁. 內政部.
王如意, 2003. 動態遞迴式類神經網路之研究及其農業水資源之應用. 農業水利科技研究發展九十一年度成果發表討論論文集.
吕京福, 印萍, 边淑华, 庄振业, 2003. 海岸线变化速率计算方法及影响要素分析. 海洋科学进展, 21(1): 51-59.
成大水利海洋研究發展文教基金會, 2007. 宜蘭海岸地形與漂沙及波潮流監測調查計畫(2/2). 經濟部水利署第一河川局.
吳明隆, 涂金堂, 2006. SPSS與統計應用分析(修定版). 五南出版社, 台北.
林宗儀, 2011. 基本地質調查臺灣海岸變遷監測分析(3/4), 經濟部中央地質調查所.
林宗儀, 翁健三, 2013. 臺灣海岸濱線變遷分析, 第35 屆海洋工程研討會論文, 國立中山大學.
林家興, 2008. 結合類神經網路及時序列方法建立颱風暴潮預測模式, 長榮大學土地管理與開發學系碩士論文.
林國峰, 2004. 應用全面監督式訓練法則所建立之輻狀基底函數網路於洪水流量預測, 水資源管理2004研討會, pp. 6-23~34.
孫建平, 1996. 類神經網路及其應用於降雨及逕流過程之研究, 國立台灣大學農業工程研究所碩士論文.
孫培基, 2003. 宜蘭沖積平原與河海關係調查報告. 水利期刊, 13: 35-53.
財團法人工業技術研究院, 2010. 99年度宜蘭、臺北、桃園、高雄及屏東地區地層下陷之監測、調查及分析 經濟部水利署(台北辦公區).
財團法人成大水利海洋研究發展文教基金會, 2005. 宜蘭海岸地形與漂沙及波潮流監測調查計畫(1).
國立中山大學, 2014. 宜蘭海岸防護基本資料調查(2/3), 經濟部水利署第一河川局.
國立中央大學通訊系統研究中心, 2008. 遙測影像應用於東部海岸線變遷之研究, 經濟部水利署水利規劃試驗所.
國立臺灣大學工程科學及海洋工程學系, 2008. 建立波潮流與海岸線變遷模式, 經濟部水利署水利規劃試驗所.
張凱堯, 張斐章, 2007. 反傳遞模糊類神經網路於抽水站操作之應用. 農業工程學報, 53(1): 82-91.
張斐章, 胡湘帆, 黃源義, 1998. 反傳遞模糊類神經網路於流量推估之應用. 中國農業工程學報, 44(2): 26-38.
張斐章, 胡湘帆, 蕭錫清, 張長圖, 2000. 模糊類神經網路於水庫即時入流量預測之應用. 台電工程月刊, 618: 7-19.
張斐章, 孫建平, 1998. 類神經網路及其應用於降雨-逕流過程之研究. 中國農業工程學報, 44(1): 34-49.
張斐章, 徐國麟, 1990. 利用模糊集理論推估河川流量之研究. 中國農業工程學報, 36(4): 1-12.
張斐章, 張麗秋, 2010. 類神經網路導論-原理與應用. 滄海書局.
張斐章, 梁晉銘, 2002. 類神經網路模糊推論模式在水文系統之研究. 台灣水利季刊, 50(1): 34-43.
張斐章, 許榮哲, 1999. 灰色模糊動態規劃於水庫即時操作之應用. 台灣水利, 47(1): 44-53.
張斐章, 惠士奇, 1998. 灰色模糊序率動態規劃於水庫操作之應用. 中國農業工程學報, 44(1): 34-49.
張斐章, 黃金鐸, 王文清, 1995. 運用模糊序率動態規劃於水庫操作之研究. 台灣水利, 43(4): 37-48.
張斐章, 黃源義, 梁晉銘, 1993. 模糊推論模式之建立及其應用於水文系統之研究. 中國農業工程學報, 39(1): 71-83.
張雅婷, 2005. 調適性網路模糊推論系統於水庫操作之研究. 國立臺灣大學農業工程學研究所博士論文.
張憲國, 錢維安, 何良勝, 2003. 應用類神經網路在台灣東岸海域颱風波浪推算之研究. 海洋工程學刊, 3(1): 73-95.
張麗秋, 2001. 智慧型演算之類神經網路於水文系統. 國立臺灣大學農業工程學研究所博士論文.
許泰文, 張憲國, 謝錦志, 許鵬, 1995. 河川與海岸穩定對策之研究-宜蘭海岸侵蝕防護對策之研究(一), 成功大學水利及海洋工程系.
郭振泰, 楊智傑, 陳彥璋, 2004. 以類神經網路預測淡水河河口之潮位. 臺灣水利, 52(4): 24-30.
曾國禎, 2009. 台灣環島及東亞地區海平面上升之研究, 國立臺灣海洋大學海洋環境資訊學系碩士論文.
游慶豐, 1993. 宜蘭海岸線變遷之研究, 國立成功大學水利及海洋工程研究所碩士論文.
黃文政, 2000. 模糊理論在河川流量預測及水資源情勢分析之研究(1/2). 國家科學委員會研究報告, NSC89-2211-E-019-008.
黃文政, 2001. 模糊理論在河川流量預測及水資源情勢分析之研究(2/2). 國家科學委員會研究報告, NSC89-2211-E-019-033.
黃文政, 吳建民, 謝宏智, 1994. 模糊聚類模式之應用. 第七屆水利工程研討會: D21-D30.
黃文政, 蔡坤良, 1997. 水資源開發模糊模式之探討. 臺灣水利, 45(2): 47-58.
賴鴻成, 1993. 類神經網路在混凝土材料強度預測之應用, 國立交通大學土木工程研究所碩士論文.
鍾鴻文, 2003. 宜蘭海岸地形斷面特性分析與預測, 國立成功大學水利及海洋工程學系碩士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56465-
dc.description.abstract海岸侵蝕造成海岸線不斷的後退會引起土地流失也會造成住在海岸的居民生命的威脅及財產的損失,臺灣多高山平原少,可使用土地有限,又位於西太平洋颱風頻繁地區,現在又面臨全球氣候變遷,海平面會逐漸上升及沿岸的土地開發等等挑戰,海岸線的後退只會比以前更加嚴峻,而海岸的保護需要多年的規劃及施工,因此發展一套海岸變遷預測模式提早作預防的準備以保護海灘避免流失為當務課題,本文選擇台灣宜蘭為研究區域,從北而南分別蒐集外澳、大福、永鎮、蔀後、清水、利澤及新城等七個地區2004/1~20011/12每個月的灘線觀測資料,先以調合分析並採用F分配檢定,宜蘭海岸線的變化是否為週期變化,資料分析結果顯示宜蘭海岸在外澳、大福、永鎮、蔀後、清水及新城呈現年週期變化; 影響海岸線變化過程之主要受到地形變化、漂砂及波流三者營造力,不但個別機制複雜且彼此交互作用,使得海岸問題用物理模式解析十分困難,模擬結果依然存在不確定性,仍必須要有實測資料驗證;而近年類神經網路常用來模擬物理方程式難以描述之複雜非線性與時變性問題,被大量地應用在水文各領域預測上,本研究透過人工智慧相關技術建構海岸線變遷預測模式,探討調適性網路模糊推論系統(ANFIS)於海岸線變遷的合宜性,預測未來一年內灘線的變化可行性,根據資料分析結果顯示,本研究建構海岸線變遷預測模式,可以精確預測1年後,外澳、大福、永鎮、蔀後、清水、利澤及新城等七個地區的海岸線的變化,預測誤差均方根在1.12~5.37m之間,這結果足可提供海岸管理者作為未來海岸線規劃、管理及預警參考zh_TW
dc.description.abstractShoreline erosion is a worldwide problem that causes a major concern to the socio-economic developments in coastal cities for many countries. The increasingly intensive human activities along coasts enlarge coastal erosion areas and aggravate erosion processes, and thus cause land losses; moreover the global climate change in the past decades results in rising sea levels. Taiwan is frequently attacked by typhoons and shoreline erosion is a major concern to local residents. Shoreline change prediction has gained considerable attention; nevertheless, little consensus has been made on the best predictive methodology due to the complex heterogeneity of coastal geomorphology and sediment-transport processes. This study intends to model the shoreline change through investigating monthly shoreline position data collected from seven sandy beaches located at the Yilan County in Taiwan during 2004-2011. The harmonic analysis results indicate shorelines appear significantly periodic with great variation. The adaptive neuro-fuzzy inference system network (ANFIS) is configured with two scenarios, namely lumped and site specific, to extract significant features of shoreline changes for making shoreline position predictions in the next year. The lumped models for all stations are first investigated based on a number of possible input information, such as month, location, and the maximum and mean wave heights. The results, however, are not as favorable as expected, and wave heights do not contribute to modelling due to their high variability. Consequently, a site-specific model is constructed for each station, with its current position and nearby stations’ positions as model inputs, to predict its shoreline position in the next year. The results indicate that the constructed ANFIS models can accurately predict shoreline changes and can serve as a valuable tool for future coastline erosion warning and management.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:29:55Z (GMT). No. of bitstreams: 1
ntu-103-D94622007-1.pdf: 5099638 bytes, checksum: 0b70ce98349b66659ca3896f023532e7 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目 錄
頁次
謝 誌 I
摘 要 III
ABSTRACT V
目 錄 VII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1-1 研究緣起 1
1-2 文獻回顧 10
1-2.1 海岸灘線變化 11
1-2.2 模糊理論 14
1-2.3 模糊推論系統 14
1-2.4 類神經網路 15
1-3 研究目的 18
1-4 研究架構 20
第二章 案例海岸基本資料 22
2-1 海岸特性 22
2-2 宜蘭海岸特性 25
2-2.1 颱風 26
2-2.2 潮汐 28
2-2.3 海流 28
2-2.4 波浪 29
2-2.5 海域底質粒徑 30
2-2.6 漂沙資料 32
2-2.7 河川輸沙 35
2-2.8 地層下陷 37
2-2.9 海岸線變化 38
第三章 理論概述 45
3-1 人工智慧 45
3-1.1 模糊理論 46
3-1.2 模糊推論系統 51
3-1.3 類神經網路 54
3-1.4 調適性網路模糊推論系統 57
3-2 調合分析 65
第四章 灘線預測模式 67
4-1 研究區域概述 67
4-1.1 海岸現況說明 67
4-1.2 灘線資料蒐集與分析 70
4-2 宜蘭海岸灘線變化預測模式 75
4-2.1 統計分析 75
4-2.2 調合分析 77
4-2.3 模式架構 80
4-3 評估指標 83
4-4 模式評析 85
第五章 結論與建議 94
5-1 結論 94
5-2 建議 96
dc.language.isozh-TW
dc.subject海岸侵蝕zh_TW
dc.subject海岸變遷zh_TW
dc.subject調適性網路模糊推論系統(ANFIS)zh_TW
dc.subjectShoreline changeen
dc.subjectShoreline erosionen
dc.subjectAdaptive neuro-fuzzy inference system (ANFIS)en
dc.title調適性網路模糊推論系統預測海岸變化–以台灣宜蘭為例zh_TW
dc.titleAdaptive Neuro-Fuzzy Inference System for Predicting Shoreline Changes –A case study in Yilan of Taiwanen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃文政教授,張麗秋教授,高家俊教授,蕭松山教授,劉振宇教授
dc.subject.keyword海岸變遷,海岸侵蝕,調適性網路模糊推論系統(ANFIS),zh_TW
dc.subject.keywordShoreline change,Shoreline erosion,Adaptive neuro-fuzzy inference system (ANFIS),en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved