請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56463完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳學禮 | |
| dc.contributor.author | Yu-Ting Yen | en |
| dc.contributor.author | 顏妤庭 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:29:50Z | - |
| dc.date.available | 2017-09-01 | |
| dc.date.copyright | 2014-09-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-13 | |
| dc.identifier.citation | [1] C. V. Raman, R. S. Krishnan, A new class of spectra due to secondary radiation. Indian J. Phys. 1928, 2, 399−419
[2] R. S. Das, Y.K. Agrawal, Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57,163−176 [3] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163−166 [4] A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241−250 [5] K. A. Willets, R. P. V. Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267−297 [6] K. M. Mayer, J. H. Hafner, Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857 [7] G. Mie, Beiträge zur Optik trüber Medien, Speziell Kolloidaler Metallösungen. Ann. Phys. 1908, 25, 377−445 [8] H. C. Hulst, Light Scattering by Small Particles; Dover Publications: New York, 1981 [9] X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, Y. Xia, Chemical Synthesis of Novel Plasmonic Nanoparticles. Annu. Rev. Phys. Chem. 2009, 60, 167–192 [10] M. E. Stewart, M. J. Motala, J. T. Yao, L B. R. G. Nuzzo, Unconventional Methods for Forming Nanopatterns. Proc. ImechE, Part N: J. Nanoeng. Nanosyst. 2007, 220, 81–138 [11] A. Biswas, I. S. Bayer, A. S. Biris, T. Wang, E. Dervishi, F. Faupel, Advances in top–down and bottom–up surface nanofabrication:Techniques, applications & future prospects. Adv. Colloid Interface Sci. 2012, 170, 2−27 [12] M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, Nanostructured Plasmonic Sensors. Chem. Rev. 2008, 108, 494−521 [13] S. Hong, X. Li, Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions. J. Nanomater. 2013, 790323 [14] A.W. Wark, R. J. Stokes, S. B. Darby, W. E. Smith, D. Graham, Dynamic Imaging Analysis of SERS-Active Nanoparticle Clusters in Suspension. J. Phys. Chem. C 2010, 114, 18115–18120 [15] M. Meyer, E. C. L. Ru, P. G. Etchegoin, Self-Limiting Aggregation Leads to Long-Lived Metastable Clusters in Colloidal Solutions. J. Phys. Chem. B 2006, 110, 6040−6047 [16] M. Grzelczak, J. Vermant, E. M. Furst, L. M. Liz-Marzan, Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605 [17] A. Boker, J. He, T. Emrick, T. P. Russell, Self-assembly of nanoparticles at interfaces. Soft Matter 2007, 3, 1231–1248 [18] S. Li , L. Liu, J. Hu, An approach for fabricating self-assembled monolayer of gold nanoparticles on NH2+ ion implantation modified indium tin oxide as the SERS-active substrate. Spectrochim. Acta, Part A 2012, 86, 533−537 [19] L. Zhang, Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection. Appl. Surf. Sci. 2013, 270, 292−294 [20] M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, P. Yang, Surface-Enhanced Raman Spectroscopy for Trace Arsenic Detection in Contaminated Water. Angew. Chem. Int. Ed. 2008, 47, 6456 –6460 [21] K. L.Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2002, 107, 668–677 [22] H. Duan, D. Wang, N. S. Sobal, M. Giersig, D. G. Kurth, H. Mohwald, Magnetic Colloidosomes Derived from Nanoparticle Interfacial Self-Assembly. Nano Lett. 2005, 5, 949–952 [23] N.Younan, M. Hojeij, L. Ribeaucourt, H. H. Girault, Electrochemical Properties of Gold Nanoparticles Assembly at Polarised Liquidliquid Interfaces. Electrochem. Commun. 2010, 12, 912–915 [24] H. Y. Lelievre, E. F. Borra, A. M. Ritcey, L. V. D. Silva, Optical Tests of Nanoengineered Liquid Mirrors. Appl. Opt. 2003, 42, 1882−1887 [25] D. Schaming, M. Hojeij, N. Younan, H. Nagatani, H. J. Lee, H. H. Girault, Photocurrents at polarized liquid|liquid interfaces enhanced by a gold nanoparticle film. Phys. Chem. Chem. Phys. 2011, 13, 17704–17711 [26] M. P. Konrad, A. P. Doherty, S. E. Bell, J. Stable and Uniform SERS Signals from Self-Assembled Two-Dimensional Interfacial Arrays of Optically Coupled Ag Nanoparticles. Anal.Chem. 2013, 85, 6783−67895 [27] M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, J. B. Edel, Self-Assembled Nanoparticle Arrays for Multiphase Trace Analyte Detection. Nat. Mater. 2013, 12, 165−171 [28] T. G. Andersson, The Initial Growth of Vapour Deposited Gold Films. Gold Bull. 1982, 15, 7–18 [29] S. Giurgola, A. Rodriguez, L. Martinez, P. Vergani, F. Lucchi, S. Benchabane, V. Pruneri, Ultra thin nickel transparent electrodes. J. Mater. Sci: Mater. Electron, 2009, 20, S181–S184 [30] M. Hovel, B. Gompf, M. Dressel, Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 035402 [31] Y. Fang, X. Li, K. Blinn, M. A. Mahmoud, M. Liu, Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering. J. Vac. Sci. Technol. A 2012, 30, 050606 [32] G.W. Yang, Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog. Mater. Sci. 2007, 52, 648−698 [33] S.J. Henley , J.D. Carey, S.R.P. Silva, Metal nanoparticle production by pulsed laser nanostructuring of thin metal films. Appl. Surf. Sci. 2007, 253, 8080−8085 [34] Q. Xia, S. Y. Chou, Applications of excimer laser in nanofabrication. Appl. Phys. A 2010, 98, 9–59 [35] G. N. Makarov, Laser applications in nanotechnology:nanofabrication using laser ablation and laser nanolithography. Phys.-Usp. 2013, 56, 643−682 [36] E. Haro-Poniatowski,E. Fort,J. P. Lacharme, C. Ricolleau, Patterning of nanostructured thin films by structured light illumination. Appl. Phys. Lett. 2005, 87, 143103 [37] S. V. Rao, G. K. Podagatlapalli, S. Hamad, Ultrafast Laser Ablation in Liquids for Nanomaterials and Applications. J. Nanosci. Nanotechnol. 2014, 14, 1364–1388 [38] S. J. Henley, J. D. Carey, S. R. P. Silva, Laser-nanostructured Ag films as substrates for surface-enhanced Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 081904 [39] R. Kubiliūte, K. A. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, A. H. A. Clayton, S. Juodkazis, Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation. Int. J. Nanomed. 2013, 8, 2601−2611 [40] I. Lee, S. W. Han, K. Kim, Simultaneous preparation of SERS-active metal colloids and plates by laser ablation. J. Raman Spectrosc. 2001, 32, 947−952 [41] R. K. Swarnkar, S. C. Singh, R. Gopal, SERS Study of Alizarin Red Dye on Colloidal Silver Nanoparticles. Mater. Res. Soc. Symp. Proc. 2010, 1241 [42] G. M. Herrera, A. C. Padilla, S. P. Hernandez-Rivera, Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation. Nanomaterials 2013, 3, 158−172 [43] M. T. Postek, A. Vladar, J. Dagata, N. Farkas, B. Ming, R. Wagner, A. Raman, R. J. Moon, R. Sabo, T. H. Wegner, J. Beecher, Development of the metrology and imaging of cellulose nanocrystals. Meas. Sci. Technol. 2011, 22, 024005 [44] D. Tobjork, R. Osterbacka, Paper Electronics. Adv. Mater. 2011, 23, 1935–1961 [45] E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Goncalves, R. Martins, High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper. IEEE Electron Device Lett. 2008, 29, 988−990 [46] M. Alava, K. Niskanen, The physics of paper. Rep. Prog. Phys. 2006, 69, 669–723 [47] A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, G. M. Whitesides, Foldable Printed Circuit Boards on Paper Substrates. Adv. Funct. Mater. 2010, 20, 28–35 [48] A. C. Siegel, S. T. Phillips, B. J. Wileya, G. M. Whitesides, Thin, lightweight, foldable thermochromic displays on paper. Lab Chip, 2009, 9, 2775–2781 [49] W. Zhang, X. Zhang, C. Lu, Y. Wang, Y. Deng, Flexible and Transparent Paper-Based Ionic Diode Fabricated from Oppositely Charged Microfibrillated Cellulose. J. Phys. Chem. C 2012, 116, 9227−9234 [50] Y. Song, P. Gyarmati, A. C. Araújo, J. Lundeberg, H. Brumer, P. L. Ståhl, Visual Detection of DNA on Paper Chips. Anal. Chem. 2014, 86, 1575−1582 [51] S. A. Klasner, A. K. Price, K. W. Hoeman, R. S. Wilson, K. J. Bell, C. T. Culbertson, Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal. Bioanal. Chem. 2010, 397, 1821–1829 [52] A. W. Martinez, S. T. Phillips, G. M. Whitesides, Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2010, 82, 3–10 [53] W. W. Yu, I. M. White, Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper. Anal. Chem. 2010, 82, 9626–9630 [54] W. W. Yu, I. M. White, Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 2013, 138, 1020–1025 [55] W. W. Yu, I. M. White, Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. Analyst 2013, 138, 3679–3686 [56] Y. H. Ngo, D. Li, G. P. Simon, G. Garnier, Gold Nanoparticle−Paper as a Three-Dimensional Surface Enhanced Raman Scattering Substrate. Langmuir 2012, 28, 8782−879 [57] Lu. L. Qua, Q. X. Songa, Y. T. Li, M. P. Peng, D. W. Li, L. X. Chen, J. S. Fossey, Y. T. Long, Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Anal. Chim. Acta 2013, 792, 86–92 [58] R. Zhang, B. B. Xu, X. Q. Liu, Y. L. Zhang, Y. Xu, Q. D. Chen, H. B. Sun, Highly efficient SERS test strips. Chem. Commun. 2012, 48, 5913–5915 [59] S. E. J. Bell, N. M. S. Sirimuthu, Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 1012–1024 [60] K. K. Strelau, T. Schuler, R. Mcller, W. Fritzsche, J. Popp, Novel Bottom-Up SERS Substrates for Quantitative and Parallelized Analytics. ChemPhysChem 2010, 11, 394–398 [61] G. Mcnay D. Eustace, W. E. Smith, K. Faulds, D. Graham, Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications. Appl. Spectrosc. 2011, 65, 825−837 [62] H. Wang, C. S. Levin, N. J. Halas, Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. J. Am. Chem. Soc. 2005, 127, 14992−14993 [63] X. Lin, W. L. J. Hasi, X. T. Lou, S. Lin, F. Yang, B. S. Jia, Y. Cui, D. X. Ba, D. Y. Lin, Z. W. Lu, Rapid and simple detection of sodium thiocyanate in milk using surface-enhanced Raman spectroscopy based on silver aggregates. J. Raman Spectrosc. 2014, 45, 162–167 [64] P. K. Roy, Y. F. Huang, S. Chattopadhyay, Detection of melamine on fractals of unmodified gold nanoparticles by surface-enhanced Raman scattering. J. Biomed. Opt. 2014, 19, 011002 [65] E. P. Hoppmann, W. W. Yu, I. M. White, Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 2013, 63, 219–224 [66] X. Jiang, M. Yang, Y. Meng, W. Jiang, J. Zhan, Cysteamine-Modified Silver Nanoparticle Aggregates for Quantitative SERS Sensing of Pentachlorophenol with a Portable Raman Spectrometer. ACS Appl. Mater. Interfaces 2013, 5, 6902−6908 [67] X. Jiang, Y. Lai, M. Yang, H. Yang, W. Jiang, J. Zhan, Silver nanoparticle aggregates on copper foil for reliable quantitative SERS analysis of polycyclic aromatic hydrocarbons with a portable Raman spectrometer. Analyst 2012, 137, 3995−4000 [68] R. Botta, G. Upender, R. Sathyavathi, D. N. Rao, C. Bansal, Silver nanoclusters films for single molecule detection using Surface Enhanced Raman Scattering (SERS). Mater. Chem. Phys. 2013, 137, 699−703 [69] H. K. Lee, Y. H. Lee, Q. Zhang, I. Y. Phang, J. M. R. Tan, Y. Cui, X. Y. Ling, Superhydrophobic Surface-Enhanced Raman Scattering Platform Fabricated by Assembly of Ag Nanocubes for Trace Molecular Sensing. ACS Appl. Mater. Interfaces 2013, 5, 11409−11418 [70] I. Zori, M. Zach, B. Kasemo, C. Langhammer, Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms. ACS Nano 2011, 5, 535–2546 [71] H. Wang, F. Tam, N. K. Grady, N. J. Halas, Cu Nanoshells: Effects of Interband Transitions on the Nanoparticle Plasmon Resonance. J. Phys. Chem. B 2005, 109, 18218−18222 [72] T. Pakizeh, Optical Absorption of Plasmonic Nanoparticles in Presence of a Local Interband Transition. J. Phys. Chem. C 2011, 115, 21826–21831 [73] Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, A. Dmitriev, Plasmon−Interband Coupling in Nickel Nanoantennas. ACS Photonics 2014, 1, 158−162 [74] M. Fleischmann, Z.Q. Tian, L.J. Li, RAMAN SPECTROSCOPY OF ADSORBATES ON THIN FILM ELECI-RODES DEPOSITED ON SILVER SUBSTRATES. J. Electrounal. Chem. 1987, 217, 397−410 [75] G. F. S. Andrade, A. G. Brolo, M. L. A. Temperini, Comparison of SERS Performances of Co and Ni Ultrathin Films over Silver to Electrochemically Activated Co and Ni Electrodes. J. Phys. Chem. C 2008, 112, 15348–15355 [76] S. Zou, M. J. Weaver, Surface-Enhanced Raman Scattering on Uniform Transition-Metal Films: Toward a Versatile Adsorbate Vibrational Strategy for Solid-Nonvacuum Interfaces? Anal. Chem. 1998, 70, 2387−2395 [77] J. Dong, Z. Sheng, G.Xue, Near-IR excited surface enhanced Raman scattering from adsorbed layer on nickel by doping with silver. Spectrochimica Acta 1995, 51, 1031−1041 [78] W. Wei, S. Li, J. E. Millstone, M. J. Banholzer, X. Chen, X. Xu, G. C. Schatz, C. A. Mirkin, Surprisingly Long-Range Surface-Enhanced Raman Scattering (SERS) on Au–Ni Multisegmented Nanowires. Angew. Chem. Int. Ed. 2009, 48, 4210–4212 [79] Z. Q. Tian, B. Ren, D. Y. Wu, Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. J. Phys. Chem. B 2002, 106, 9463−9483 [80] Z. Q. Tian, B. Ren, Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 2004, 55, 197–229 [81] W.B. Cai, B. Ren, X.Q. Li, C.X. She, F.M. Liu, X.W. Cai, Z.Q. Tian, Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope : dependence of surface roughening pretreatment. Surf. Sci. 1998, 406, 9–22 [82] Q.J. Huang, J. L. Yao, B.W. Mao, R.A. Gu, Z.Q. Tian, Surface Raman spectroscopic studies of pyrazine adsorbed onto nickel electrodes. Chem. Phys. Lett. 1997, 271, 101–106 [83] D. Zhang, H. Yang, Gelatin-stabilized copper nanoparticles : Synthesis, morphology, and their surface-enhanced Raman scattering properties. Physica B 2013, 415, 44–48 [84] A. Zhao, T. Mei, X. Lin, L. Ni, A. Wu, Aligned Copper Nanorod Arrays for Surface- enhanced Raman Scattering. IEEE. 2007, 79–82 [85] R. Han, W. Pan, S. Shi, H. Wu, S. Liu, Electrodeposition of macroporous magnetic metal films using colloidal nickel phosphate templates. Mater. Lett. 2007, 61, 5014–5017 [86] S. Sarkar, S. Pande, S. Jana, A. K.r Sinha, M.l Pradhan, M. Basu, S. Saha, S. M. Yusuf, T. Pal, Room Temperature Ferromagnetic Ni Nanocrystals: An Efficient Transition Metal Platform for Manifestation of Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2009, 113, 6022–6032 [87] S. Sarkar, M. Pradhan, A. K. Sinha, M. Basu, T. Pal, Chelate Effect in Surface Enhanced Raman Scattering with Transition Metal Nanoparticles. J. Phys. Chem. Lett. 2010, 1, 439–444 [88] R.Han, H. Wu, C. Wan, W. Pan, Templated nanoporous copper and nickel: Novel substrates for surface-enhanced Raman scattering. Scr. Mater. 2008, 59, 1047–1050 [89] G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Goring, U. Gosele, P. Miclea, R. B. Wehrspohn, Surface-enhanced Raman spectroscopy employing monodisperse nickel nanowire arrays. Appl. Phys. Lett. 2006, 88, 023106 [90] L. Zhang, Y. Fang, P. Zhang, Laser-MBE of nickel nanowires using AAO template: A new active substrate of surface enhanced Raman scattering. Spectrochim. Acta, Part A 2008, 69, 91−95 [91] F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti1, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 2011, 5, 682−687 [92] F. Xu, Y. Zhang, Y. Sun, Y. Shi, Z. Wen, Z. Li, Silver Nanoparticles Coated Zinc Oxide Nanorods Array as Superhydrophobic Substrate for the Amplified SERS Effect. J. Phys. Chem. C 2011, 115, 9977−9983 [93] F. Gentile, M. L. Coluccio, N. Coppedè, F. Mecarini, G. Das, C. Liberale, L. Tirinato, M. Leoncini, G. Perozziello, P. Candeloro, F. De Angelis, E. Di Fabrizio, Superhydrophobic Surfaces as Smart Platforms for the Analysis of Diluted Biological Solutions. ACS Appl. Mater. Interfaces 2012, 4, 3213−3224 [94] Q. X. Zhang, Y. X. Chen, Z. Guo, H. L. Liu, D. P. Wang, X. J. Huang, Bioinspired Multifunctional Hetero-Hierarchical Micro/Nanostructure Tetragonal Array with Self-Cleaning, Anticorrosion, and Concentrators for the SERS Detection. ACS Appl. Mater. Interfaces 2013, 5, 10633−10642 [95] B. B. Xu, Y. L. Zhang, W. Y. Zhang, X. Q. Liu, J. N. Wang, X. L. Zhang, D. D. Zhang, H. B. Jiang, R. Zhang, H. B. Sun, Silver-Coated Rose Petal: Green, Facile, Low-Cost and Sustainable Fabrication of a SERS Substrate with Unique Superhydrophobicity and High Efficiency. Adv. Optical Mater. 2013, 1, 56−60 [96] X. Liu, C. Zong, K. Ai, W. He, L. Lu, Engineering Natural Materials as Surface-Enhanced Raman Spectroscopy Substrates for In situ Molecular Sensing. ACS Appl. Mater. Interfaces 2012, 4, 6599−6608 [97] R. H. Webb, Confocal optical microscopy. Rep. Prog. Phys. 1996, 59, 427–471 [98] M. P. Konrad, A. P. Doherty, S. E. J. Bell, Stable and Uniform SERS Signals from Self-Assembled Two-Dimensional Interfacial Arrays of Optically Coupled Ag Nanoparticles. Anal. Chem. 2013, 85, 6783−6789 [99] K. C. Gordon, J. J. McGarvey, K. P. Taylor, Enhanced Raman Scatterlng from 'Liquid Metal' Fllms Formed from Sllver Sols. J. Phys. Chem. 1989, 93, 6814−6817 [100] L. Wang, Y. Sun, G. Che, Z. Li, Self-assembled silver nanoparticle films at an air–liquid interface and their applications in SERS and electrochemistry. Appl. Surf. Sci. 2011, 257, 7150−7155 [101] Henglein, A.; Giersig, M. Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate. J. Phys. Chem. B 1999, 103, 9533−9539 [102] Pillai, Z. S.; Kamat, P. V. What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method? J. Phys. Chem. B 2004, 108, 945−951 [103] Jiang, X. C.; Chen, W. M.; Chen, C. Y.; Xiong, S. X.; Yu, A. B. Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach. Nanoscale Res. Lett. 2011, 6, 32 [104] B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver. Chem. Eur. J. 2005, 11, 454–463 [105] D. A. Thornton, G. M. Watkins, A full vibrational assignment (4000-50 cm-1) of l,10-phenanthroline and its perdeuterated analogue. Spectrachimica Acta. 1991, 47, 1085−1096 [106] Y. Peng, Z. Niu, W. Huang, S. Chen, Z. Li, Surface-Enhanced Raman Scattering Studies of 1,10-Phenanthroline Adsorption and Its Surface Complexes on a Gold Electrode. J. Phys. Chem. B 2005, 109, 10880−10885 [107] A. A. Mcconnell, D. H. Brown, W. E. Smith, The vibrational properties of gold(III) chloride complexes of hipyridyl and 1,10-phenanthroline. Spectrachimica Acta. 1982, 38, 265−270 [108] M. Ranjbar, E. Malakooti, S.Sheshmani, Synthesis and Characterization of Mercury(II) Complexes Containing 2,9-Dimethyl-1,10-phenanthroline by Sonochemical Method. Journal of Chemistry 2013, 560983 [109] E. W. Palik , Handbook of Optical Constants of Solids, Academic, Orlando 1985 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56463 | - |
| dc.description.abstract | 在本論文中,我們期望製作出低成本環境友善且具有高靈敏度之準三維(quasi-3D)微奈米複合結構作為表面增強拉曼散射基材,並探討所製作之拉曼增強基材的定量分析能力。在第一部分與第二部分的論文中,我們分別以雷射熱退火所誘發之光熱效應,使濺鍍於濾紙基材之金屬薄膜成為奈米粒子;以及利用硝酸銀與檸檬酸鈉還原出之銀奈米粒子懸浮液配合配位基(ligand)的方式形成液態面鏡(liquid mirror),再將之轉置於濾紙基材,作為物理法以及化學還原法所製作之兩種表面增強拉曼散射試紙,並且將全氟辛基三氯矽烷蒸鍍於拉曼試紙,利用超疏水濃縮效應來達到濃縮待測物以及去除液態面鏡中配位基本身具有的背景拉曼訊號,使之成為良好的拉曼增強基材。在入射雷射光為633奈米的量測架構下,於4-胺基苯硫酚之拉曼訊號強度與濃度對數座標關係圖中,銀拉曼試紙能夠提供的線性分析區域範圍是10^-6~10^-11 M之間,而可以量測到的最低濃度為10^-12 M;另一方面,液態面鏡本身是非常緊密排列的銀奈米粒子陣列所構成,在液態時即能夠量測到10^-17 M之4-胺基苯硫酚的拉曼增強訊號,而液態面鏡轉置於濾紙後形成的試紙呈現的線性區域為10^-5~10^-11 M,最低濃度則是能夠量測到10^-13 M。並且,我們也探討了不同入射雷射光波長、不同金屬種類、不同奈米粒子形貌與不同倍率物鏡之光學量測架構對定量分析線性區域涵蓋範圍的影響。在這兩部分的實驗中,我們成功製作出具有準三維微奈米複合結構,並且具備了可撓性、拋棄式以及環境友善特性的拉曼增強試紙。
在第三部分的論文中我們以氫氧化鉀蝕刻未拋光之矽晶圓,利用其本身晶面特性形成微米大小的金字塔結構並濺鍍鎳與銅過渡金屬於其上,由於鎳與銅本身相較於金與銀是披覆性較好而較容易成膜的金屬,因此可以在較低的鍍膜厚度下形成緊密的奈米粒子結構。鍍膜厚度為20奈米之銅金字塔結構與鍍膜厚度為10奈米之鎳金字塔分別能夠量測到10^-10 M與10^-9 M之羅丹明的拉曼增強訊號,此量測結果已經超越既有文獻中以此二種金屬直接作為拉曼增強基材之最低偵測濃度極限值。並且,我們透過經由不同倍率的物鏡在拉曼試紙與金屬金字塔結構上量測待測物之拉曼訊號,發現這類電場增強熱點具有微米等級縱深分布的準三維結構,除了存在有效拉曼偵測體積範圍內之熱點數能夠較平面的拉曼基材為多,在載台離焦時待測物的訊號強度衰減速度較緩慢外,準三維拉曼基材適合以低倍率物鏡進行訊號量測,在戶外攜帶式的拉曼量測系統的應用上非常具有潛力。 | zh_TW |
| dc.description.abstract | In this thesis, we aimed for fabricating low-cost, highly sensitive quasi-three dimensional (quasi-3D) micro-and nanostructures as surface enhanced Raman scattering (SERS) substrates, and elaborate the ability to demonstrate quantitative detection of analyte molecules. In the first part and second part of this thesis, we prepared our SERS paper substrates from physical and chemical reduction methods, respectively. First, we adopted laser-induced photo-thermal effect to convert metal thin film into nanoparticles (NPs) on filter paper. Second, we used silver nitrite and sodium citrate to synthesize silver nanoparticles (AgNPs), and then fabricated liquid mirror via the addition of chemical ligand followed by transferring liquid mirror onto filter paper. Moreover, we used superhydrophobic treatment by coating perflurooctyltrichlorosilane onto the paper SERS substrates to further improve SERS detection sensitivity. The Raman background signal interference of the ligand in liquid mirror could be significantly reduced at the same time. By the excitation laser having a wavelength of 633 nm, the AgNPs SERS paper provided linear response of SERS intensity with the concentration of 4-aminothiophenol (4-ATP) from 10^-6 M to 10^-11 M in log/log plot, and the detection limit was 10^-12 M. On the other hand, liquid mirror was composed of extremely closely packed AgNPs array, the detection limit of 4-ATP could down to 10^-17 M at liquid state. After transferred onto filter paper, liquid mirror SERS paper provided linear response of SERS intensity with the concentration of 4-ATP from 10^-5 M to 10^-11 M, and the detection limit was 10^-13 M. Also, we discussed the influences of the wavelength of excitation laser, the kind of metal, the distribution of NPs in SERS substrates and the instrumental factors on the linear region of quantitative detection. We have fabricated deformable, disposable and eco-friendly SERS paper with quasi-3D micro-and nanostructures.
In the third part of this thesis, anisotropic etching by potassium hydroxide was used to fabricate silicon pyramid, and then transition metal thin film was deposited onto these micro pyramids. Due to the better adhesion of nickel and copper to substrates compared to gold and silver, they were able to form relatively close NPs when the deposition thickness was thin. The detection limit of rhodamine 6G on copper pyramid SERS substrate was 10^-10 M and it was 10^-9 M on nickel pyramid when the deposition thicknesses were 20nm and 10nm, respectively. The detection limit is superior to other SERS substrates made from copper or nickel in previous researches. By the way of measuring the SERS signals of analyte via different objective lens, we found that if the hot-spots exhibited quasi-3D distribution, more hot-spots could reside in the probing volume of SERS signal over flat SERS substrates. The SERS intensity of analyte would decrease slowly when the stage of microscope was defocusing. Quasi-3D SERS paper and transition metal pyramid are suitable for measuring SERS signals via objective lens with low magnification. These quasi-3D substrates have the potential to be applied to low cost of portable Raman systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:29:50Z (GMT). No. of bitstreams: 1 ntu-103-R01527034-1.pdf: 14877394 bytes, checksum: db5616fb5523bfd8f5f3e9168a567ba3 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 V Abstract VII 目錄 IX 圖目錄 XII 表目錄 XX 第一章 序論 1 1.1前言 1 1.2論文架構 3 第二章 文獻回顧 4 2.1表面增強拉曼光譜 4 2.1.1拉曼散射基本原理 4 2.1.2表面增強拉曼散射基本原理 5 2.2金屬奈米粒子性質與表面增強拉曼散射基材製作 7 2.2.1金屬奈米粒子之侷域性表面電漿子共振(localized surface plasmon resonance) 7 2.2.2以化學合成法與金屬奈米粒子自組裝製作表面增強拉曼散射基材 10 2.2.3以非化學合成法製作表面增強拉曼散射基材 14 2.3以紙基材作為光電感測元件 20 2.4表面增強拉曼散射訊號之定量 25 2.4.1拉曼散射訊號定量之困難與技術之提升 25 2.4.2拉曼散射訊號定量之方法 26 2.5過渡金屬之表面增強拉曼散射研究 30 2.5.1金屬性質討論 30 2.5.2過渡金屬於表面拉強拉曼散射之研究 31 第三章 以雷射誘發之光熱效應製作表面增強拉曼散射試紙與定量分析 36 3.1研究目的 36 3.2研究方法 39 3.3研究結果與討論 41 3.3.1以雷射熱退火製作表面增強拉曼散射試紙 41 3.3.2不同待測物型態以表面增強拉曼散射試紙所得待測物訊號強度之關係 49 3.3.3不同金屬種類下待測物之表面增強拉曼散射訊號強度與其濃度之關係探討 51 3.3.4不同波長之拉曼激發雷射光下待測物之表面增強拉曼散射訊號強度與其濃度之關係探討 55 3.3.5不同奈米粒子形貌下待測物之表面增強拉曼散射訊號強度與其濃度之關係探討 58 3.3.6拉曼訊號量測架構與待測物之表面增強拉曼散射訊號強度之關係探討 61 3.3.7與商用表面增強拉曼散射基板比較 71 3.3.8表面增強拉曼散射試紙偵測混合待測物之能力 73 3.4結論 75 第四章 以銀奈米粒子液態面鏡製作表面增強拉曼散射試紙與定量分析 77 4.1研究目的 77 4.2研究方法 80 4.3研究結果與討論 82 4.3.1銀奈米粒子液態面鏡製作 82 4.3.2以銀奈米粒子液態面鏡進行表面增強拉曼訊號量測 86 4.3.3以液態面鏡製作表面增強拉曼散射試紙 90 4.3.4脫模劑疏水表面改質之有無對拉曼訊號量測的影響 93 4.3.5待測物之表面增強拉曼散射訊號強度與其濃度之關係探討 100 4.3.6待測物以及基材型態與表面增強拉曼訊號強度之關係 102 4.4結論 104 第五章 過渡金屬用於表面增強拉曼散射訊號之研究 105 5.1研究目的 105 5.2研究方法 107 5.3研究結果與討論 109 5.3.1過渡金屬種類選擇 109 5.3.2過渡金屬之表面增強拉曼散射基材製作 114 5.3.3過渡金屬表面增強拉曼散射基材之待測物訊號量測結果 118 5.3.4拉曼訊號量測架構與待測物之表面增強拉曼散射訊號強度之關係探討 125 5.3.5光學模擬結構與電場強度分析 130 5.4結論 133 第六章 結論 134 6.1研究總結 134 6.2未來展望 137 參考文獻 138 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表面增強拉曼散射 | zh_TW |
| dc.subject | 定量分析 | zh_TW |
| dc.subject | 準三維結構 | zh_TW |
| dc.subject | 濾紙基材 | zh_TW |
| dc.subject | 微奈米複合結構 | zh_TW |
| dc.subject | 液態面鏡 | zh_TW |
| dc.subject | 過渡金屬 | zh_TW |
| dc.subject | 低成本環境友善基材 | zh_TW |
| dc.subject | liquid mirror | en |
| dc.subject | surface enhanced Raman scattering (SERS) | en |
| dc.subject | quantitative analysis | en |
| dc.subject | quasi-three dimensional structures | en |
| dc.subject | filter paper | en |
| dc.subject | micro-and nanostructures | en |
| dc.subject | low-cost and eco-friendly substrates | en |
| dc.subject | transition metal | en |
| dc.title | 紙基與矽基之準三維微奈米複合結構於表面增強拉曼散射之定量分析與應用研究 | zh_TW |
| dc.title | Paper and silicon-based substrates with quasi-three dimensional micro-and nanostructures for surface enhanced Raman scattering and quantitative analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王子建,林俊宏,張雯惠,萬德輝 | |
| dc.subject.keyword | 表面增強拉曼散射,定量分析,準三維結構,濾紙基材,微奈米複合結構,液態面鏡,過渡金屬,低成本環境友善基材, | zh_TW |
| dc.subject.keyword | surface enhanced Raman scattering (SERS),quantitative analysis,quasi-three dimensional structures,filter paper,micro-and nanostructures,liquid mirror,transition metal,low-cost and eco-friendly substrates, | en |
| dc.relation.page | 146 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 14.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
