Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56456
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王偉仲
dc.contributor.authorChe-Ming Chuen
dc.contributor.author朱哲明zh_TW
dc.date.accessioned2021-06-16T05:29:29Z-
dc.date.available2014-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation[1] Joshua Dennis Booth, Anirban Chatterjee, Padma Raghavan, and Michael Frasca. A multilevel cholesky conjugate gradients hybrid solver for linear systems with multiple right-hand sides. Procedia Computer Science, 4:2307–2316, 2011.
[2] Ichitaro Yamazaki. Pdslin user guide. 2012.
[3] Ichitaro Yamazaki and Xiaoye S Li. On techniques to improve robustness and scalability of the schur complement method. In Proc. VECPAR, pages 421–34, 2010.
[4] Chenhan D Yu, Weichung Wang, and Dan’l Pierce. A cpu–gpu hybrid approach for the unsymmetric multifrontal method. Parallel Computing, 37(12):759–770, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56456-
dc.description.abstract隨著科技的進步,單核心電腦運算速度已經快要達到上限值,所以現在電腦都朝著多核心運算發展,因此科學計算也須跟著發展出平行運算。在科學計算中,大型稀疏線性系統一直以來都扮演了極為重要的角色。我們討論的方法是對一般稀疏矩陣,而我們使用的方法是利用巢狀分割法重排稀疏矩陣,以利於以舒爾法來平行解線性系統。但我們的只完成對稱正定矩陣的程式。
因為BLAS3對全滿矩陣運算在GPU上運算相當的快,也因為舒爾補矩陣幾乎都是全滿矩陣,又因為全滿矩陣通常較適合直接法,所以在本篇文章中,我們全部是以直接法解線性系統,並不會以疊代法解舒爾補矩陣。但這樣就需要計算出完整的舒爾補矩陣,這會帶來三點問題:第一,需要大量記憶體來儲存舒爾補矩陣;第二,分解舒爾補矩陣所需的時間會非常多。所以,我們需發展出一套方法來解決以上二點問題。
巢狀分割法能夠重排矩陣,使矩陣分成一部分可完全平行而另一部分不容易平行分解。而巢狀分割法重排矩陣有著特殊的性質,能夠使得舒爾補矩陣仍然與重排後的矩陣有相同的結構,也就是說舒爾補矩陣也有可以平行的部份(但可平行的效果會越來越差),因此我們想利用此一性質,來增加平行效果。
zh_TW
dc.description.abstractCPUs have reached their clock rate limits due to physical constrains. Parallel computers are increasingly used to achieve higher computing performances. How computational algorithms and codes can take advantages of parallel computers thus become more and more important. In scientific computing, solving large sparse general linear systems is one of critical problem. The nested dissection recording can reorder a sparse matrix to allow parallelism of triangular factorization on block sub-matrices. The key of this approach is how we solve embedded linear system corresponding to the Schur complement. While existed methods solve this embedded linear system iteratively, we carefully study the hierarchical of the Schur complement so that we can use direct methods to solve the embedded linear system recursively. We demonstrate the advantage of our approach by focusing on an implementation on CPU-GPU hybrid system for symmetric positive definite linear systems. Numerical results suggest the proposed hierarchical Schur method is promising in small or large parallel computer cluster with many-core accelerators.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:29:29Z (GMT). No. of bitstreams: 1
ntu-103-R00221036-1.pdf: 5581960 bytes, checksum: 22490a218dd30cde2c969e4b7c34403b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents i
List of Figures iv
中文摘要 vii
Abstract viii
1 Introduction 1
1.1 Literature Review 2
1.2 Motivation 2
1.3 Purpose 3
2 Background 5
2.1 Nested Dissection for Sparse Matrix 5
2.1.1 One-level Nested Dissection 6
2.1.2 Two-level and Higher-level Nested Dissection 6
2.1.3 Separators Gathering 8
2.2 SchurComplementMethod 9
2.3 Nested Dissection Method and Schur Complement Method
Combination 10
2.4 Direct Solver for Sparse SPD Matrix 12
2.5 GPU Accelerator for Scientific Computing 13
2.6 Challenge 13
2.6.1 The Linear System with the Schur Complement 13
2.6.2 The Sparse Multiple Right-hand-side 14
2.6.3 Communication Between Computer and Computer 14
3 Hierarchical Schur Complement Method 16
3.1 Schur Complement Matrix of NDG Matrices 17
3.1.1 Nonzero Submatrices of NDG Matrices 19
3.1.2 Nonzero Submatrices of the Schur Complement of NDG
Matrices 21
3.2 Basic Idea of Hierarchical Schur Complement Method 24
3.2.1 The n Schur Complement Matrices 24
3.2.2 Solving the Linear System with G(n) 25
3.3 Communication Reduction and Improvement for Hierarchical
Schur Complement Method 29
3.3.1 Numerical Data Storage Format 32
3.3.2 Compressing Matrices 33
3.3.3 Comparing with Basic Idea 44
3.4 Combining Right-hand-side 45
4 Numerical result 47
dc.language.isozh-TW
dc.subject疊帶法zh_TW
dc.subject線性系統zh_TW
dc.subject圖形處理器zh_TW
dc.subject舒爾法zh_TW
dc.subject巢狀分割法zh_TW
dc.subject直接法zh_TW
dc.subjectschur complement methoden
dc.subjectdirect methoden
dc.subjectnested dissection methoden
dc.subjectGPUen
dc.subjectlinear systemen
dc.title以多層次舒爾法在 CPU-GPU 叢集上解大型稀疏線性系統zh_TW
dc.titleHybrid Hierarchical Schur Solvers for Large Sparse Linear Systems on CPU-GPU Clusteren
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃聰明,李哲榮
dc.subject.keyword線性系統,圖形處理器,舒爾法,巢狀分割法,直接法,疊帶法,zh_TW
dc.subject.keywordlinear system,GPU,schur complement method,nested dissection method,direct method,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved