請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56418完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施文彬 | |
| dc.contributor.author | Yu-Hsuan Wang | en |
| dc.contributor.author | 王瑜瑄 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:27:40Z | - |
| dc.date.available | 2015-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | [1] A. M. Elliott, B. H. Smith, P. C. Hanaford, W. C. Smith, and W. A. Chambers, “The course of chronic pain in the community: results of a 4-year follow-up study,” Pain, vol. 99, pp. 299-307, 2002.
[2] C. G. Helmick, D. T. Felson, R. C. Lawrence, S. Gabriel, R. Hirsch, C. K. Kwoh, M. H. Liang, H. M. Kremers, M. D. Mayes, P. A. Merkel, S. R. Pillemer, J. D. Reveille, and J. H. Stone, “Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part I,” Arthritis Rheum., vol. 58, pp. 15-25, 2008. [3] P. Cote, J. D. Cassidy, and L. Carroll, “The Saskatchewan health and back pain survey: the prevalence of neck pain and related disability in Saskatchewan adults,” Spine, vol. 23, pp. 1689-1698, 1998. [4] H. B. Bressler, W. J. Keyes, P. A. Rochon, and E. Badley, “The prevalence of low back pain in the elderly: a systematic review of the literature,” Spine, vol. 24, pp. 1813-1819, 1999. [5] F. Cecchi, P. Debolini, R. M. Lova, C. Macchi, S. Bandinelli, B. Bartali, F. Lauretani, E. Benvenuti, G. Hicks, and L. Ferrucci, “Epidemiology of back pain in a representative cohort of Italian persons 65 years of age and older: the inCHIANTI study,” Spine, vol. 31, pp. 1149-1155, 2006. [6] M. Mortimer, G. Pernold, and C. Wiktorin, “Low back pain in a general population. Natural course and influence of physical exercise – a 5-year follow-up of the musculoskeletal intervention center-Norrtalje study,” Spine, vol. 31, pp. 3045-3051, 2006. [7] H. R. Guo, S. Tanaka, W. E. Halperin, and L. L. Cameron, “Back pain prevalence in US industry and estimates of lost workdays,” Am. J. Public Health, vol. 89, pp. 1029-1035, 1999. [8] N. Attal, G. Cruccu, R. Baron, M. Haanpaa, P. Hansson, T. S. Jensen, and T. Nurmikko, “EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision,” Eur. J. Neurol., vol. 17, pp. 1113-1123, 2010. [9] N. B. Finnerup, S. H. Sindrup, and T. S. Jensen, “The evidence for pharmacological treatment of neuropathic pain,” Pain, vol. 150, pp. 573-581, 2010. [10] E. J. Tehovnik “Electrical stimulation of neural tissue to evoke behavioral responses,” J. Neurosci. Methods, vol. 65, pp. 1-17, 1996. [11] R. Fuentes, P. Petersson, W. B. Siesser, M. G. Caron, and M. A. L. Nicolelis, “Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease,” Science, vol. 323, pp. 1578-1582, 2009. [12] J. W. M. Geurts, L. Lou, C. A. Gauci, P. Newnham, and R. M. A. W. van Kijk, “Radiofrequency treatments in low back pain,” Pain Pract., vol. 2, pp. 226-234, 2002. [13] D. Byrd and S. Mackey, “Pulsed radiofrequency for chronic pain,” Curr. Pain Headache Rep., vol. 12, pp. 37-41, 2008. [14] F. Tendick, S. S. Sastry, R, S. Fearing, and M. Cohn, “Applications of micromechtronics in minimally invasive surgery,” IEEE/ASME Trans. Mechatron., vol. 3, No. 1, 1998. [15] K. Van Boxem, M. Van Eerd, T. Brinkhuizen, J. Tatijn, M. Van Kleef, and J. Van Zundert, “Radiofrequency and pulsed radiofrequency treatment of chronic pain syndromes: the available evidence,” Pain Pract., vol. 8, pp. 385-393, 2008. [16] C. T. Wu, “Development of implantable bipolar neural stimulation electrode for low back pain treatment,” Master Thesis, National Taiwan University, 2012. [17] M. M. Sluijter and G. Racz, “Technical aspects of radiofrequency,” Pain Pract., vol. 2, pp. 195-200, 2002. [18] D. Shatin, K. Mullett, and G. Hults, “Totally implantable spinal-cord stimulation for chronic pain – design and efficacy,” PACE, vol. 9, pp. 577-583, 1986. [19] C. H. Chang, “Feasibility study of implantable pulsed-radiofrequency stimulator with verification on sciatica rat model,” Master Thesis, National Taiwan University, 2009. [20] M. HajjHassan, V. Chodavarapu, and S. Musallam, “NeuroMEMS: neural probe microtechnologies,” Sensors, vol. 8, pp. 6704-6726, 2008. [21] F. Wu, M. Im, and E. Yoon, “A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coating for enhanced biocompatibility,” TRANSDUCERS Conf., Beijing, CHINA, 5-9 June 2011, pp. 966-969. [22] F. Wu, L. Tien, F. Chen, D. Kaplan, J. Berke, and E. Yoon, “A multi-shank silk-backed parylene neural probe for reliable chronic recording,” TRANSDUCERS & EUROSENSORS XXVII Conf., Barcelona, SPAIN, 16-20 June 2013, pp. 888-891, 2013. [23] R. B. North, V. R. Recinos, F. J. Attenello, J. Shipley, and D. M. Long, “Prevention of percutaneous spinal cord stimulation electrode migration: a 15-year experience,” Neuromodulation, 2014. [24] R. K. Shepherd, S. Hatsushika, and G. M. Clark, “Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation,” Hear. Res., vol. 66, pp. 108-120, 1993. [25] X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst., vol. 10, pp. 229-258, 2005. [26] L. A. Geddes and R. Roeder, “Criteria for the selection of materials for implanted electrodes,” Annu.Rev. of Biomed. Eng., vol. 31, pp. 879-890, 2003. [27] S. H. Cho, H. M. Lu, L. Cauller, M. I. Romero- Ortega, J. B. Lee, and G. A. Hughes, “Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers,” IEEE Sens. J., vol. 8, pp. 1830-1836, 2008. [28] D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, vol. 21, pp. 2529-2543, 2000. [29] N. A. Campbell, B. Williamson, and R. J. Heyden, Biology: exploring life, Pearson Prentice Hall, 2006. [30] T. S. Karande, J. L. Ong, and C. M. Agrawal, “Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing,” Ann. Biomed. Eng., vol. 32, No. 12, 2004. [31] M. Lee, B. M. Wu, and J. C. Y. Dunn, “Effect of scaffold architecture and pore size on smooth muscle cell growth,” J. Biomed. Mater. Res. Part A, vol. 87A, pp. 1010-1016, 2008. [32] F. Walther, P. Davydovskaya, S. Zürcher, M. Kaiser, H. Herberg, A. M. Gigler and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. Microeng., vol. 17, pp. 524-531, 2007. [33] M. Hennemeyer, F. Walther, S. Kerstan, K. Schürzinger, A. M. Gigler, and R. W. Starka, “Cell proliferation assays on plasma activated SU-8,” Microelectron. Eng., vol. 85, pp.1298-1301, 2008. [34] J. Domke and M. Radmacher, “Measuring the elastic properties of thin polymer films with the atomic force microscope,” Langmuir, pp. 3320-3325, 1998. [35] J. Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2000, pp.18-22. [36] X. Luo and J. J. Davis, “Electrical biosensors and the label free detection of protein disease biomarkers,” Chem. Soc. Rev., pp.5944-5962, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56418 | - |
| dc.description.abstract | 根據歷年來的統計,需要下背痛治療的人數不斷上升。雖然下背痛可以有效依靠藥物來減緩症狀,然而藥物治療會產生副作用。因此,研究學者希望找到其他的治療方式。植入式的電刺激系統可用於長期的電刺激治療,而無線式的脈衝射頻也已經廣泛的使用在背痛的治療中,並且持續的由研究學者們研究與改良。
本篇研究成功的設計且製造出一款用於微創手術具有微翼和孔洞結構之植入式探針。此探針設計中具有微翼與孔洞結構,可用來提升在體內中的固定能力。此外,除了一對導電對以刺激目標神經外,還有兩對偵測對,以用於感測細胞在孔洞內的生長。設計的探針包含兩部分: SU-8層與基底層,基底層是具有電路設計的軟性電路板。實驗結果顯示,SU-8層可提升約21.17%的平均楊氏係數與截面二次軸矩的乘積值。而微翼結構可以提升約38.58%的抗拉力。在阻抗測量上,探針在不同環境中的阻抗具有明顯差異,代表感測電極用於偵測細胞生長是可行的。 設計的探針成品也與上一代的電極 (FPC-based electrode with adhesive microtubes) 和不同外觀形狀的設計做抗拉強度的比較,從拉伸實驗中可以定義出一個幾何係數,此代表探針的幾何形狀也會對抗拉強度產生影響。 | zh_TW |
| dc.description.abstract | Literature statistics showed that the needs for low back pain treatment have been increasing. Low back pain can be effectively relieved by pharmacological treatment. However, this type of treatment may cause lots of side effects. Thus, researchers have been seeking other ways to relieve low back pain. Lots of implantable stimulation systems have been developed for long-term treatment. Pulse radiofrequency (PRF) stimulation has been widely used for back pain treatment and still being studied.
This thesis presents a bipolar porous probe for implantable nerve stimulation treatment utilizing minimally invasive surgery (MIS). The probe’s design features micro-wings and pores for cell growth that promote long-term fixation in the body. Two recording pairs detect whether cells grow into the pores, and one pair of stimulating pads stimulates the target nerve. The probe is composed of two layers: one SU-8 layer and one flexible printed circuit (FPC) layer. Results show that SU-8 films can increase the average product of the area moment of inertia and Young’s modulus by 21.17% from 5.81 x〖10〗^(-6) N∙m^2 to 7.04 x〖10〗^(-6) N∙m^2, and that micro-wings can increase the force of fixation by 38.58% from 0.114 N to 0.158 N. From the impedance test, the impedance of the recording pairs in different surroundings shows the apparent difference, indicating that two recording pairs are promising for detecting cells growth. The designed probe is also compared with a prior work, FPC-based electrode with adhesive microtubes, and other geometry of probes. From the result, a geometric coefficient, m, is defined to show that geometry is also one of the key factors for fixation of probes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:27:40Z (GMT). No. of bitstreams: 1 ntu-103-R01522519-1.pdf: 3004542 bytes, checksum: 96ec08920b193620063fa21b20d686dd (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii SYMBOL TABLE v CONTENTS viii LIST OF FIGURES xi LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Backgrounds and motivation 1 1.2 Overview of the implantable stimulation system 2 1.3 Implantable stimulation electrodes/ probes and methods of anchoring 4 1.3.1 Literature review of implantable stimulation electrodes/ probes 4 1.3.2 Significance and methods of probes/ electrodes anchoring 7 1.3.3 Requirements of the designed probe 7 1.4 Thesis organization 8 Chapter 2 Device design 9 2.1 Selection of Materials 9 2.2 Probe design 9 2.2.1 Probe structure 9 2.2.2 FPC substrates 12 2.2.3 Mask design 15 Chapter 3 Fabrication 16 3.1 Fabrication processes 16 3.2 Post process- Air plasma treated probe surface 20 3.3 Comparing with literature-reviewed design 20 Chapter 4 Test results and discussion 22 4.1 Bending tests 22 4.1.1 Stiffness comparison of probes (with and without SU-8 films) 22 4.1.2 Critical load of the probe 24 4.2 Tensile tests (Fixation comparison of probes) 25 4.2.1 With and without micro-wings design 26 4.2.2 Comparing with FPC-based electrode with adhesive microtubes 29 4.2.3 Comparing probes with different geometries 31 4.2.4 Determining Young’s modulus of gelatin 32 Chapter 5 Measurement and Observation 34 5.1 Contact angles measurement 34 5.2 In vitro cell cultivation 34 5.2.1 Methods of cell cultivation 34 5.2.2 Results 36 5.3 Impedance measurement 37 5.3.1 The theoretical equivalent circuit 37 5.3.2 Impedance tests 41 Chapter 6 Conclusions and future work 47 6.1 Conclusions 47 6.2 Future work 51 REFERENCE 52 Appendix A Process capability of FPC fabrication 57 Appendix B Materials 58 | |
| dc.language.iso | en | |
| dc.subject | 植入式電刺激系統 | zh_TW |
| dc.subject | 探針 | zh_TW |
| dc.subject | 微創手術 | zh_TW |
| dc.subject | 微翼 | zh_TW |
| dc.subject | 孔洞 | zh_TW |
| dc.subject | 軟性電路板 | zh_TW |
| dc.subject | SU-8 | zh_TW |
| dc.subject | SU-8 | en |
| dc.subject | Implantable stimulation systems | en |
| dc.subject | probes | en |
| dc.subject | minimally invasive surgery | en |
| dc.subject | micro-wings | en |
| dc.subject | pores | en |
| dc.subject | flexible printed circuit (FPC) | en |
| dc.title | 用於微創手術具有微翼和孔洞結構之植入式探針 | zh_TW |
| dc.title | An Implantable FPC-based neural probe with pore and micro-wing structure for minimally invasive surgery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 游佳欣,林啟萬,胡毓忠 | |
| dc.subject.keyword | 植入式電刺激系統,探針,微創手術,微翼,孔洞,軟性電路板,SU-8, | zh_TW |
| dc.subject.keyword | Implantable stimulation systems,probes,minimally invasive surgery,micro-wings,pores,flexible printed circuit (FPC),SU-8, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
