請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56383完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏文(Hung-Wen Chen) | |
| dc.contributor.author | Miao-Yi Cheng | en |
| dc.contributor.author | 鄭妙怡 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:26:03Z | - |
| dc.date.available | 2025-08-11 | |
| dc.date.copyright | 2020-08-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-28 | |
| dc.identifier.citation | 1. Aplin, J.D., Developmental cell biology of human villous trophoblast: current research problems. Int J Dev Biol, 2010. 54(2-3): p. 323-9. 2. Evain-Brion, D. and A. Malassine, Human placenta as an endocrine organ. Growth Horm IGF Res, 2003. 13 Suppl A: p. S34-7. 3. Norwitz, E.R., Defective implantation and placentation: laying the blueprint for pregnancy complications. Reprod Biomed Online, 2006. 13(4): p. 591-9. 4. Moffett, A. and C. Loke, Immunology of placentation in eutherian mammals. Nat Rev Immunol, 2006. 6(8): p. 584-94. 5. James, J.L., A.M. Carter, and L.W. Chamley, Human placentation from nidation to 5 weeks of gestation. Part I: What do we know about formative placental development following implantation? Placenta, 2012. 33(5): p. 327-34. 6. Wilcox, A.J., et al., Incidence of Early Loss of Pregnancy. 1988. 319(4): p. 189-194. 7. Pijnenborg, R., et al., Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta, 1980. 1(1): p. 3-19. 8. Pijnenborg, R., L. Vercruysse, and M. Hanssens, The uterine spiral arteries in human pregnancy: facts and controversies. Placenta, 2006. 27(9-10): p. 939-58. 9. Handwerger, S., New insights into the regulation of human cytotrophoblast cell differentiation. Mol Cell Endocrinol, 2010. 323(1): p. 94-104. 10. Cierna, Z., et al., Intermediate trophoblast--A distinctive, unique and often unrecognized population of trophoblastic cells. Ann Anat, 2016. 204: p. 45-50. 11. Windsperger, K., et al., Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum Reprod, 2017. 32(6): p. 1208-1217. 12. Kaufmann, P., S. Black, and B. Huppertz, Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod, 2003. 69(1): p. 1-7. 13. Hosoya, T., et al., glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell, 1995. 82(6): p. 1025-36. 14. Jones, B.W., et al., glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell, 1995. 82(6): p. 1013-23. 15. Vincent, S., J.L. Vonesch, and A. Giangrande, Glide directs glial fate commitment and cell fate switch between neurones and glia. Development, 1996. 122(1): p. 131-9. 16. Wegner, M. and D. Riethmacher, Chronicles of a switch hunt: gcm genes in development. Trends Genet, 2001. 17(5): p. 286-90. 17. Lyall, F., et al., Transforming growth factor-beta expression in human placenta and placental bed in third trimester normal pregnancy, preeclampsia, and fetal growth restriction. Am J Pathol, 2001. 159(5): p. 1827-38. 18. Ding, C., B. Buckingham, and M.A. Levine, Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest, 2001. 108(8): p. 1215-20. 19. Cohen, S.X., et al., Structure of the GCM domain-DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. EMBO J, 2003. 22(8): p. 1835-45. 20. Basyuk, E., et al., Murine Gcm1 gene is expressed in a subset of placental trophoblast cells. Dev Dyn, 1999. 214(4): p. 303-11. 21. Anson-Cartwright, L., et al., The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet, 2000. 25(3): p. 311-4. 22. Schreiber, J., et al., Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Mol Cell Biol, 2000. 20(7): p. 2466-74. 23. Chen, C.P., et al., Decreased placental GCM1 (glial cells missing) gene expression in pre-eclampsia. Placenta, 2004. 25(5): p. 413-21. 24. Baczyk, D., et al., Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ, 2009. 16(5): p. 719-27. 25. Yu, C., et al., GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem, 2002. 277(51): p. 50062-8. 26. Liang, C.Y., et al., GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in human placenta. Biol Reprod, 2010. 83(3): p. 387-95. 27. Cheong, M.L., et al., A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGbeta Expression and Cell Differentiation. Mol Cell Biol, 2016. 36(1): p. 197-209. 28. Read, J.E., et al., Glial Cells Missing 1 Regulates Equine Chorionic Gonadotrophin Beta Subunit via Binding to the Proximal Promoter. Front Endocrinol (Lausanne), 2018. 9: p. 195. 29. Guibourdenche, J., et al., Hyperglycosylated hCG is a marker of early human trophoblast invasion. J Clin Endocrinol Metab, 2010. 95(10): p. E240-4. 30. Wang, L.J., et al., High-temperature requirement protein A4 (HtrA4) suppresses the fusogenic activity of syncytin-1 and promotes trophoblast invasion. Mol Cell Biol, 2012. 32(18): p. 3707-17. 31. Chen, Y.Y., et al., Functional antagonism between high temperature requirement protein A (HtrA) family members regulates trophoblast invasion. J Biol Chem, 2014. 289(33): p. 22958-68. 32. Verloes, A., et al., HLA-G expression in human embryonic stem cells and preimplantation embryos. J Immunol, 2011. 186(4): p. 2663-71. 33. Ferreira, L.M., et al., A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface. Proc Natl Acad Sci U S A, 2016. 113(19): p. 5364-9. 34. Tanaka, S., et al., Promotion of trophoblast stem cell proliferation by FGF4. Science, 1998. 282(5396): p. 2072-5. 35. Soncin, F., D. Natale, and M.M. Parast, Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell Mol Life Sci, 2015. 72(7): p. 1291-302. 36. Okae, H., et al., Derivation of Human Trophoblast Stem Cells. Cell Stem Cell, 2018. 22(1): p. 50-63 e6. 37. Wang, Y. and H. Wang, Successful derivation of human trophoblast stem cells. Biol Reprod, 2018. 99(2): p. 271-272. 38. Latos, P.A. and M. Hemberger, From the stem of the placental tree: trophoblast stem cells and their progeny. Development, 2016. 143(20): p. 3650-3660. 39. Lancaster, M.A. and J.A. Knoblich, Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc, 2014. 9(10): p. 2329-40. 40. Huch, M. and B.K. Koo, Modeling mouse and human development using organoid cultures. Development, 2015. 142(18): p. 3113-25. 41. McCracken, K.W., et al., Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014. 516(7531): p. 400-4. 42. Dye, B.R., et al., In vitro generation of human pluripotent stem cell derived lung organoids. Elife, 2015. 4. 43. Morrisey, E.E. and B.L. Hogan, Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell, 2010. 18(1): p. 8-23. 44. Kessler, M., et al., The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun, 2015. 6: p. 8989. 45. Turco, M.Y., et al., Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol, 2017. 19(5): p. 568-577. 46. Boretto, M., et al., Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development, 2017. 144(10): p. 1775-1786. 47. Haider, S., et al., Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta. Stem Cell Reports, 2018. 11(2): p. 537-551. 48. Turco, M.Y., et al., Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature, 2018. 564(7735): p. 263-267. 49. Friedman, R.L., et al., Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell, 1984. 38(3): p. 745-55. 50. Lewin, A.R., et al., Molecular analysis of a human interferon-inducible gene family. Eur J Biochem, 1991. 199(2): p. 417-23. 51. Savidis, G., et al., The IFITMs Inhibit Zika Virus Replication. Cell Rep, 2016. 15(11): p. 2323-30. 52. Smith, S.E., et al., Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro. J Virol, 2013. 87(23): p. 12957-66. 53. Siegrist, F., M. Ebeling, and U. Certa, The small interferon-induced transmembrane genes and proteins. J Interferon Cytokine Res, 2011. 31(1): p. 183-97. 54. Hickford, D., et al., Evolution of vertebrate interferon inducible transmembrane proteins. BMC Genomics, 2012. 13: p. 155. 55. Deblandre, G.A., et al., Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J Biol Chem, 1995. 270(40): p. 23860-6. 56. Diamond, M.S. and M. Farzan, The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol, 2013. 13(1): p. 46-57. 57. Harris, R.A., et al., DNA methylation-associated colonic mucosal immune and defense responses in treatment-naive pediatric ulcerative colitis. Epigenetics, 2014. 9(8): p. 1131-7. 58. Kim, B.S., et al., IFITM1 increases osteogenesis through Runx2 in human alveolar-derived bone marrow stromal cells. Bone, 2012. 51(3): p. 506-14. 59. Lee, J., et al., Overexpression of IFITM1 has clinicopathologic effects on gastric cancer and is regulated by an epigenetic mechanism. Am J Pathol, 2012. 181(1): p. 43-52. 60. Andreu, P., et al., Identification of the IFITM family as a new molecular marker in human colorectal tumors. Cancer Res, 2006. 66(4): p. 1949-55. 61. Takahashi, S., et al., TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J Immunol, 1990. 145(7): p. 2207-13. 62. Bradbury, L.E., V.S. Goldmacher, and T.F. Tedder, The CD19 signal transduction complex of B lymphocytes. Deletion of the CD19 cytoplasmic domain alters signal transduction but not complex formation with TAPA-1 and Leu 13. J Immunol, 1993. 151(6): p. 2915-27. 63. Tanaka, S.S., et al., IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev Cell, 2005. 9(6): p. 745-56. 64. Lange, U.C., et al., Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster. Mol Cell Biol, 2008. 28(15): p. 4688-96. 65. Feeley, E.M., et al., IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog, 2011. 7(10): p. e1002337. 66. Lu, J., et al., The IFITM proteins inhibit HIV-1 infection. J Virol, 2011. 85(5): p. 2126-37. 67. Huang, I.C., et al., Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog, 2011. 7(1): p. e1001258. 68. Compton, A.A., et al., IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe, 2014. 16(6): p. 736-47. 69. Raychoudhuri, A., et al., ISG56 and IFITM1 proteins inhibit hepatitis C virus replication. J Virol, 2011. 85(24): p. 12881-9. 70. Brass, A.L., et al., The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 2009. 139(7): p. 1243-54. 71. Bailey, C.C., et al., IFITM-Family Proteins: The Cell's First Line of Antiviral Defense. Annu Rev Virol, 2014. 1: p. 261-283. 72. Tartour, K., et al., Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs. PLoS Pathog, 2017. 13(9): p. e1006610. 73. Weston, S., et al., A membrane topology model for human interferon inducible transmembrane protein 1. PLoS One, 2014. 9(8): p. e104341. 74. Smith, S.E., et al., Interferon-Induced Transmembrane Protein 1 Restricts Replication of Viruses That Enter Cells via the Plasma Membrane. J Virol, 2019. 93(6). 75. Jia, R., et al., The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity. PLoS One, 2015. 10(3): p. e0118794. 76. Yu, F., et al., IFITM1 promotes the metastasis of human colorectal cancer via CAV-1. Cancer Lett, 2015. 368(1): p. 135-143. 77. Ogony, J., et al., Interferon-induced transmembrane protein 1 (IFITM1) overexpression enhances the aggressive phenotype of SUM149 inflammatory breast cancer cells in a signal transducer and activator of transcription 2 (STAT2)-dependent manner. Breast Cancer Res, 2016. 18(1): p. 25. 78. Yang, G., et al., IFITM1 plays an essential role in the antiproliferative action of interferon-gamma. Oncogene, 2007. 26(4): p. 594-603. 79. Zheng, W., et al., Down-regulation of IFITM1 and its growth inhibitory role in cervical squamous cell carcinoma. Cancer Cell Int, 2017. 17: p. 88. 80. Tanaka, S.S. and Y. Matsui, Developmentally regulated expression of mil-1 and mil-2, mouse interferon-induced transmembrane protein like genes, during formation and differentiation of primordial germ cells. Gene Expr Patterns, 2002. 2(3-4): p. 297-303. 81. Zhao, X., et al., Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses. J Virol, 2018. 92(6). 82. Zhao, X., et al., Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. Proc Natl Acad Sci U S A, 2014. 111(18): p. 6756-61. 83. Schneider, W.M., M.D. Chevillotte, and C.M. Rice, Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 2014. 32: p. 513-45. 84. Wu, X., et al., Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell, 2018. 172(3): p. 423-438 e25. 85. Wu, X., et al., Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog, 2012. 8(4): p. e1002617. 86. Haas, S. and A. Trumpp, An Intrinsic Interferon Program Protects Stem Cells from Viral Infection. Dev Cell, 2018. 44(3): p. 279-280. 87. Miner, J.J., et al., Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise. Cell, 2016. 165(5): p. 1081-1091. 88. Yockey, L.J., et al., Type I interferons instigate fetal demise after Zika virus infection. Sci Immunol, 2018. 3(19). 89. Buchrieser, J., et al., IFITM proteins inhibit placental syncytiotrophoblast formation and promote fetal demise. Science, 2019. 365(6449): p. 176-180. 90. Zani, A., et al., Interferon-induced transmembrane proteins inhibit cell fusion mediated by trophoblast syncytins. J Biol Chem, 2019. 294(52): p. 19844-19851. 91. Gerbaud, P., K. Tasken, and G. Pidoux, Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion. Front Pharmacol, 2015. 6: p. 202. 92. Fock, V., et al., Neuregulin-1-mediated ErbB2-ErbB3 signalling protects human trophoblasts against apoptosis to preserve differentiation. J Cell Sci, 2015. 128(23): p. 4306-16. 93. Bolze, P.A., M. Mommert, and F. Mallet, Contribution of Syncytins and Other Endogenous Retroviral Envelopes to Human Placenta Pathologies. Prog Mol Biol Transl Sci, 2017. 145: p. 111-162. 94. Dupressoir, A., et al., Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A, 2009. 106(29): p. 12127-32. 95. Dupressoir, A., et al., A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc Natl Acad Sci U S A, 2011. 108(46): p. E1164-73. 96. Redman, C.W., I.L. Sargent, and A.C. Staff, IFPA Senior Award Lecture: making sense of pre-eclampsia - two placental causes of preeclampsia? Placenta, 2014. 35 Suppl: p. S20-5. 97. Ji, L., et al., Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med, 2013. 34(5): p. 981-1023. 98. Lala, P.K. and C. Chakraborty, Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury. Placenta, 2003. 24(6): p. 575-87. 99. Caniggia, I., et al., Inhibition of TGF-beta 3 restores the invasive capability of extravillous trophoblasts in preeclamptic pregnancies. J Clin Invest, 1999. 103(12): p. 1641-50. 100. Karmakar, S. and C. Das, Regulation of trophoblast invasion by IL-1beta and TGF-beta1. Am J Reprod Immunol, 2002. 48(4): p. 210-9. 101. Ma, Y., et al., Regulation of plasminogen activator inhibitor (PAI)-1 expression in a human trophoblast cell line by glucocorticoid (GC) and transforming growth factor (TGF)-beta. Placenta, 2002. 23(10): p. 727-34. 102. Xuan, Y.H., et al., Expression of TGF-beta signaling proteins in normal placenta and gestational trophoblastic disease. Histol Histopathol, 2007. 22(3): p. 227-34. 103. Shaarawy, M., M. El Meleigy, and K. Rasheed, Maternal serum transforming growth factor beta-2 in preeclampsia and eclampsia, a potential biomarker for the assessment of disease severity and fetal outcome. J Soc Gynecol Investig, 2001. 8(1): p. 27-31. 104. Djurovic, S., et al., Plasma concentrations of Lp(a) lipoprotein and TGF-beta1 are altered in preeclampsia. Clin Genet, 1997. 52(5): p. 371-6. 105. Pang, Z.J. and F.Q. Xing, Expression of transforming growth factor-beta and insulin-like growth factor in molar and placental tissues. Arch Gynecol Obstet, 2003. 269(1): p. 1-4. 106. Desai, J., et al., Signal transduction and biological function of placenta growth factor in primary human trophoblast. Biol Reprod, 1999. 60(4): p. 887-92. 107. Galzi, J.L., T. Jouault, and J. Amedee, [Organoids: mini-organs at the service of biomedicine]. Med Sci (Paris), 2019. 35(5): p. 467-469. 108. Yanez, D.C., S. Ross, and T. Crompton, The IFITM protein family in adaptive immunity. Immunology, 2020. 159(4): p. 365-372. 109. Zhao, X., et al., IFITM Genes, Variants, and Their Roles in the Control and Pathogenesis of Viral Infections. Front Microbiol, 2018. 9: p. 3228. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56383 | - |
| dc.description.abstract | 在人類胎盤發育的過程中,滋養層細胞 (trophoblast cell) 主要透過兩種分化途徑來形成完整的胎盤結構。其中一種是形成絨毛膜的絨毛,其內層是具有增生及分化能力的細胞性滋養層細胞 (cytotrophoblasts, CTBs) 所組成,並藉由細胞融合形成絨毛外層的多核融合滋養層細胞(syncytiotrophoblasts, STBs),這對於胎兒與母親之間營養與氣體的交換十分重要。另一種是形成錨定絨毛 (anchoring villus) 並與蛻膜 (decidua) 接觸,其中的部分細胞性滋養層細胞可進一步分化為絨毛外滋養層細胞 (extravillous trophoblasts, EVTs),它們可重塑母體的螺旋小動脈,提供足夠的血液供應給成長中的胎兒。由此可知滋養層細胞的分化與胎盤發育和妊娠相關疾病有很大的關聯,因此,透過了解滋養層細胞的分化機制,可以幫助我們在臨床上治療與妊娠相關疾病。 為了瞭解滋養層細胞的分化,我們從人類的胎盤中建立了由細胞性滋養層衍生的滋養層幹細胞 (trophoblast stem cell, TSC),並成功地將其分化為融合滋養層細胞和絨毛外滋養層細胞,接著我們進一步分析這三種型態的滋養層細胞,從數據中發現到IFITM1 (interferon-induced transmembrane protein) 在絨毛外滋養層細胞中高度表達,在細胞株和人類的胎盤組織也確認IFITM1專一表達於絨毛外滋養層細胞中,而在先前的研究證明了IFITM1能夠抑制內源性逆轉錄病毒的融合蛋白合胞素 (syncytin),來阻斷細胞的融合。因此,我們認為IFITM1是能夠影響滋養層細胞分化的重要角色之一。而從胎盤的結構中我們可以發現絨毛中與蛻膜接觸的細胞性滋養層細胞才會分化成絨毛外滋養層細胞,是否代表蛻膜細胞能夠影響滋養層細胞的分化命運,所以我們透過共培養系統,觀察到蛻膜細胞能使滋養層細胞的侵襲能力增加,而在處理蛻膜細胞條件培養液的實驗中也發現到IFITM1及和絨毛外滋養層細胞分化相關的基因表現量上升,而對融合滋養層細胞所需的合胞素則沒有顯著差異,所以我們認為蛻膜細胞能藉由某些因子誘導滋養層細胞往絨毛外滋養層細胞分化。 為了進一步證明IFITM1會影響到滋養層細胞的分化,我們首先將IFITM1過表現於滋養層幹細胞再進行分化,卻發現對於融合滋養層細胞的細胞融合能力以及分化為絨毛外滋養層細胞的進程沒有顯著影響,而若是把IFITM1利用RNA干擾的方式下調,則發現到IFITM1的缺失會影響到滋養層幹細胞分化成絨毛外滋養細胞,其中也包含了和絨毛外滋養層細胞分化的相關基因表現量減少,除此之外,我們發現到當抑制TGFβ時能使IFITM1的表現量上調,且在絨毛外滋養層細胞分化的早期便能觀察到IFITM1表達出現。綜上所述,我們的研究表明了蛻膜細胞分泌有關抑制TGFβ信號傳導的因子,而誘導IFITM1高度表達,使滋養層細胞往絨毛外滋養細胞的方向分化。 | zh_TW |
| dc.description.abstract | During human placental development, trophoblast cells differentiate through two major pathways to establish the dynamic placental structure. One is the formation of chorionic villus which is composed of an outer layer of multinucleated syncytiotrophoblasts (STBs) and inner stem cell-like cytotrophoblasts (CTBs). Indeed, CTBs undergo cell-cell fusion to form STBs that are essential for nutrient-gas exchange between fetus and mother. The other is the formation of anchoring villus which attaches to the decidua and from where CTBs proliferate and differentiate into extravillous trophoblasts (EVTs) to remodel maternal spiral arterioles and provide sufficient blood supply to the growing fetus. These differentiation pathways are crucial for placental development, and abnormalities in these pathways are associated with pregnancy disorders. Therefore, investigation on the mechanism of trophoblast differentiation is important for the development of clinical treatments of pregnancy disorders. To better understand trophoblast differentiation, we have established the CTB-derived trophoblast stem cells (TSCs) from the human placenta and these TSCs can successfully differentiate into STBs and EVTs. Gene expression profiling of TSCs, STBs, and EVTs shows that interferon-induced transmembrane protein (IFITM1) is highly expressed in EVTs. We further demonstrate that IFITM1 is primarily expressed in EVTs in vitro and in vivo. Previous studies have indicated that IFITM1 blocks cell fusion mediated by the endogenous retroviral fusogens, syncytins. Hence, we hypothesize that IFITM1 is a key factor in regulation of trophoblast differentiation. Because CTBs encounter decidual cells when they are differentiating into EVTs, we also hypothesize that decidual cells may modulate EVTs differentiation. Indeed, we detect increased invasive ability of TSCs when co-cultured with decidual cells. Moreover, treatment of TSCs with the conditioned medium of decidual cells upregulate expression of IFITM1 and genes related to EVT differentiation, but not syncytin. To study how IFITM1 regulates trophoblast differentiation, we overexpress IFITM1 in TSCs and test their capacities in STB and EVT differentiation. No significant effect of IFITM1 overexpression was detected on the cell-cell fusion in STB differentiation and the expression of EVT markers. Interestingly, knocking down IFITM1 by RNA interference significantly suppresses EVT differentiation in terms of marker expression and cell morphology. We further demonstrate that repression of TGFβ signaling pathway in TSCs leads to IFITM1 upregulation and that IFITM1 expression is an early event in the differentiation process of EVTs. Taken together, our study indicates that activation of IFITM1 expression promotes the differentiation of TSCs into EVTs via inhibition of TGFβ signaling, which can be contributed by decidual factors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:26:03Z (GMT). No. of bitstreams: 1 U0001-2707202010515500.pdf: 1917341 bytes, checksum: ad6f3992c1d678a6d5f5bb21a23673a8 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 i 目錄圖表 iii 中文摘要 iv 英文摘要 vi 第一章 緒論 1.1 胎盤 1 1.2 GCM 轉錄因子 4 1.3 滋養層幹細胞 6 1.4 IFITM跨膜蛋白家族 8 1.5 研究動機 12 第二章 材料與方法 2.1 細胞株培養和細胞轉染 13 2.2 定量及時聚合酶連鎖反應 15 2.3 SDS 聚丙烯醯胺凝膠電泳與西方墨點法 17 2.4 組織免疫染色 18 2.5 重組質體構築 19 2.6 RNA干擾及慢病毒感染 22 2.7 類器官的培養 22 2.8 免疫螢光染色 23 2.9 類器官免疫螢光染色 24 2.10 細胞共培養侵入分析 25 第三章 實驗結果 3.1 IFITM1在絨毛外滋養層細胞中大量表現 26 3.2 蛻膜細胞能促進絨毛外滋養層細胞的分化 28 3.3 IFITM1對滋養層細胞分化的影響 29 3.4 TGFβ對絨毛外滋養層細胞中IFITM1的影響 30 第四章 討論與總結 32 第五章 圖表 37 第六章 參考文獻 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 絨毛外滋養層細胞 | zh_TW |
| dc.subject | 胎盤 | zh_TW |
| dc.subject | 滋養層細胞的分化 | zh_TW |
| dc.subject | placenta | en |
| dc.subject | extravillous trophoblast | en |
| dc.subject | trophoblast differentiation | en |
| dc.title | 人類絨毛外滋養層細胞分化的調控機制 | zh_TW |
| dc.title | Regulatory mechanism of human extravillous trophoblast differentiation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張震東(Geen-Dong Chang),張功耀(Kung-Yao Chang),黃娟娟(Jiuan-Jiuan Hwang) | |
| dc.subject.keyword | 絨毛外滋養層細胞,滋養層細胞的分化,胎盤, | zh_TW |
| dc.subject.keyword | extravillous trophoblast,trophoblast differentiation,placenta, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202001896 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202010515500.pdf 未授權公開取用 | 1.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
