Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56353
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許博文(Powen Hsu)
dc.contributor.authorYu-Wei Liuen
dc.contributor.author劉昱緯zh_TW
dc.date.accessioned2021-06-16T05:24:45Z-
dc.date.available2024-07-25
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citation[1] J.-Y. Park, S.-M. Han, and T. Itoh, “A rectenna design with harmonic-rejecting circular-sector antenna,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 3, pp. 52-54, 2004.
[2] C.-H. K. Chin, Q. X., and C. H. Chan, “Design of a 5.8-GHz rectenna incorporating a new patch antenna,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 4, pp. 175-178, 2005.
[3] M. Ali, G. Yang, and R. Dougal, “Miniature circularly polarized rectenna with reduced out-of-band harmonics,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 5, pp. 107-110, 2006.
[4] Y.-J. Ren, M. F. Farooqui, and K. Chang, “A compact dual-frequency rectifying antenna with high-orders harmonic-rejection,” IEEE Trans. Antennas Propagat., vol. 55, no. 7, pp. 2110-2113, Jul. 2007.
[5] Y. Horii and M. Tsutsumi, “Harmonic control by photonic bandgap on microstrip patch antenna,” IEEE Trans. Microw. Guided Wave Lett., vol. 9, no. 1, pp. 13-15, Jan. 1999.
[6] Y. J. Sung, M. Kim, and Y.-S. Kim, “Harmonic reduction with defected ground structure for a microstrip patch antenna,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 2, pp. 111-113, 2003.
[7] H. Liu, Z. Li, X. Sun, and J. Mao, “Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna,” IEEE Trans. Micro. Wireless Comp. Lett., vol. 15, no. 2, pp. 55-56, Feb. 2005.
[8] Y. J. Sung and Y.-S. Kim, “An improved design of microstrip patch antennas using photonic bandgap structure,” IEEE Trans. Antennas Propagat., vol. 53, no. 5, pp. 1799-1804, May 2005.
[9] L. I.-Sanchez, J.-L. V.-Roy, and E. R.-Iglesias, “Proximity coupled microstrip patch antenna with reduced harmonic radiation,” IEEE Trans. Antennas Propagat., vol. 57, no. 1, pp. 27-32, Jan. 2009.
[10] S. Kwon, B. M. Lee, Y. J. Yoon, W. Y. Song, and J.-G. Yook, “A harmonic suppression antenna for an active integrated antenna,” IEEE Trans. Micro. Wireless Comp. Lett., vol. 13, no. 2, pp. 54-56, Feb. 2003.
[11] R. Dehbashi, Z. Atlasbaf, and K. Forooraghi, “New compact size microstrip antennas with harmonic rejection,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 5, pp. 395-398, 2006.
[12] A. Guraliuc, G. Manara, P. Nepa, G. Pelosi, and S. Selleri, “Harmonic tuning for ku-band dielectric resonator antennas,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 6, pp. 568-571, 2007.
[13] H. Kim and Y. J. Yoon, “Compact microstrip-fed meander slot antenna for harmonic suppression,” Electron. Lett., vol. 39, no. 10, pp. 761-763, May 2003.
[14] H. Kim, K. S. Hwang, K. Chang, and Y. J. Yoon, “Novel slot antennas for harmonic suppression,” IEEE Trans. Micro. Wireless Comp. Lett., vol. 14, no. 6, pp. 286-288, June 2004.
[15] H. Kim and Y. J. Yoon, “Microstrip-fed slot antennas with suppressed harmonics,” IEEE Trans. Antennas Propagat., vol. 53, no. 9, pp. 2809-2817, Sep. 2005.
[16] N.-A. Nguyen, R. Ahmad, Y.-T. Im, Y.-S. Shin, and S.-O. Park, “A T-shaped wide-slot harmonic suppression antenna,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 6, pp. 647-650, 2007.
[17] W.-H. Tu, “Compact harmonic-suppressed coplanar waveguide-fed inductively coupled slot antenna,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 7, pp. 542-544, 2008.
[18] K. Chang, R. A. York, P. S. Hall, and T. Itoh, “Active integrated antennas,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 937-944, Mar. 2002.
[19] P. S. Hall and I. L. Morrow, “Analysis of radiation from active microstrip antennas,” IEE Proc. –Microw. Antennas Propag., vol. 141, pp. 359-366, Oct. 1994.
[20] J. Lin and T. Itoh, “Active integrated antennas,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2186-2194, Dec. 1994.
[21] C. W. Pobanz and T. Itoh, “Active integrated antennas,” IEEE Potentials, vol. 16, pp. 6-10, Apr.-May 1997.
[22] S. S.-Garcia and J.-J. Laurin, “Study of a CPW inductively coupled slot antenna,” IEEE Trans. Antennas Propagat., vol. 47, no. 1, pp. 58-64, Jan. 1999.
[23] D. M. Pozar, Microwave Engineering, 3rd edition, John Wiley & Sons, N.Y., 2005, ch. 8.
[24] H. H. Meinke, “Active antennas,” N. Z. Eng., vol. 19, pp. 697–705, Dec.1966.
[25] J. Lin and T. Itoh, “Active integrated antennas,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2186–2194, Dec. 1994.
[26] A. Zarroug, P. S. Hall, and M. Cryan, “Active antenna phase control using subharmonic locking,” Electron. Lett., vol. 31, no. 11, pp. 842–843, May 1995.
[27] R. D. Martinez and R. C. Compton, “Electronic beamsteering of active arrays with phase-locked loops,” IEEE Microwave Guided Lett., vol. 4, pp. 166–168, June 1994.
[28] E. Lee, K. M. Chan, P. Gardner, and T. E. Dodgson, “Active integrated antenna design using a contact-less, proximity coupled, differentially fed technique,” IEEE Trans. Antennas Propagat., vol. 55, no. 2, pp. 267-276, Jan. 2007.
[29] S. S.-Garcia and J.-J. Laurin, “Study of a CPW inductively coupled slot antenna,” IEEE Trans. Antennas Propagat., vol. 47, no. 1, pp. 58-64, Jan. 1999.
[30] S. Vajha and P. Shastry, “A novel proximity coupled patch antenna for active circuit integration,” in Proc. IEEE Int. Symp. APS , Jul. 8–13, 2001, vol. 4, pp. 772–775.
[31] K. Chang, K. A. Hummer, and G. Gopalakrishnan, “Active radiating element using FET source integrated with microstrip patch antenna,” Electron. Lett., vol. 24, no. 21, pp. 1347–1348, Oct. 1988.
[32] J. O. McSpadden, L. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2053–2060, Dec. 1998.
[33] Y.-H. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 7, pp. 1784–1789, Jul. 2002.
[34] T.-W. Yoo and K. Chang, “Theoretical and experiment development of 10 and 35 GHz rectennas,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 6, pp. 1259–1266, Jun. 1992.
[35] J. O. McSpadden, L. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2053–2060, Dec. 1998.
[36] Y.-H. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 7, pp. 1784–1789, Jul. 2002.
[37] T.-W. Yoo and K. Chang, “Theoretical and experiment development of 10 and 35 GHz rectennas,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 6, pp. 1259–1266, Jun. 1992.
[38] J.-Y. Park, S.-M. Han, and T. Itoh, “A rectenna design with harmonicrejecting circular-sector antenna,” IEEE Antennas Wireless Propagat. Lett., vol. 3, pp. 52–54, Mar. 2004.
[39] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 69–71, Feb. 1998.
[40] Y. Horri and M. Tsutsumi, “Harmonic control by photonic bandgap on microstrip patch antenna,” IEEE Microwave Guided Lett., vol. 9, pp. 13–15, Jan. 1999.
[41] Y. Horri and M. Tsutsumi, “Harmonic control by photonic bandgap on microstrip patch antenna,” IEEE Microw. Guided Wave Lett., vol. 9, no. 1, pp. 13–15, Jan. 1999.
[42] Y. Sung, M. Kim, and Y. Kim, “Harmonics reduction with defected ground structure for a microstrip patch antenna,” IEEE Antennas Wireless Propag. Lett., vol. 2, no. 8, pp. 111–113, Aug. 2003.
[43] S. Kwon, H. K. Yoon, Y. J. Yoon, “Harmonic tuning antennas using slots and short-pins,” IEEE Antennas and Propagation Society International Symposium 2001 , vol.1, pp.118-121 vol.1, 2001.
[44] S. A. Hamzah, M. Esa, and N. N. N. A. Malik, “Reduced size harmonic suppressed fractal dipole antenna with reconfigurable feature,” IEEE 2010 Asia-Pacific Microwave Conference Proceedings, pp. 2040–2043, 2010.
[45] S. A. Hamzah, M. Esa, N. N. N. A. Malik, and M. K. H. Ismail, “Reconfigurable harmonic suppressed fractal dipole anenna,” IEEE 2012 Asia-Pacific Microwave Conference Proceedings, pp. 800–805, 2012.
[46] S. A. Hamzah, M. Esa, N. N. N. A. Malik, and M. K. H. Ismail, “Frequency reconfigurable switchable Koch fractal dipole employing harmonic traps,” IEEE 2013 Asia-Pacific Microwave Conference Proceedings, pp. 429–431, 2013.
[47] J. A. Navarro and K. Chang, Integrated Active Antennas and Spatial Power Combining. New York: Wiley, 1996.
[48] R. A. York, “Phase-locking dynamics in active integrated antenna arrays,” in Analysis and Design of Integrated-Circuit Antenna Modules, P. S. Hall and K. C. Gupta, Eds. New York: Wiley, 1999.
[49] K. D. Stephan and W. A. Morgan, “Analysis of inter-injection-locked oscillators for integrated phased arrays,” IEEE Trans. Antennas Propagat., vol. AP-35, pp. 771–781, July 1987.
[50] P. Liao and R. A. York, “A new phase-shifterless beam scanning technique using arrays of coupled oscillators,” IEEE Trans. Microwave Theory Tech., pp. 1810–1815, Oct. 1993.
[51] A. Zarroug, P. S. Hall, and M. Cryan, “Active antenna phase control using subharmonic locking,” Electron. Lett., vol. 31, no. 11, pp. 842–843, May 1995.
[52] R. D. Martinez and R. C. Compton, “Electronic beamsteering of active arrays with phase-locked loops,” IEEE Microwave Guided Lett., vol. 4, pp. 166–168, June 1994.
[53] T. Ohira, K. Ueno, K. Horikawa, and H. Ogawa, “Onboard active phase array techniques for high-performance communication satellites,” in MWE Microwave Workshop Dig., Yokohama, Japan, Dec. 1997, pp. 339–345.
[54] V. Radisic, Y. Qian, and T. Itoh, “Novel architectures for high-efficiency amplifiers for wireless applications,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1901–1909, Nov. 1998.
[55] J. Keikkinen and M. Kivikoski, “A novel dual-frequency circularly-polarized rectenna,” IEEE Antennas Wireless Propagat. Lett., vol. 2, pp. 330–333, Feb. 2003.
[56] J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 1014–1024, Mar. 2004.
[57] B. Strassner and K. Chang, “5.8-GHz circularly polarized dual-rhombicloop traveling-wave rectifying antenna for low power-density wireless power transmission applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1548–1553, May 2003.
[58] J. O. McSpadden and K. Chang, “A dual polarized circular patch rectifying antenna at 2.45 GHz for microwave power conversion and detection,” in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp. 1749–1752.
[59] Y. J. Ren, M. F. Farooqui, and K. Chang, “A compact dual-frequency rectifying antenna with high-orders harmonic-rejection,” IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 2110–2113, Jul. 2007.
[60] S. Kwon, B. M. Lee, Y. J. Yoon, W. Y. Song, and J. G. Yook, “A harmonic suppression antenna for an active integrated antenna,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, pp. 54–56, 2003.
[61] I. Kim, J. Kim, S. Pinel, J. Laskar,M. Tentzeris, and J. Yook, “Novel feeding topologies for 2nd harmonic suppression in broadband microstrip patch antennas,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., 2006, pp. 1483–1486.
[62] Z. Harouni, L. Osman, and A. Gharsallah, “Efficient 2.45 GHz CPW patch antenna including harmonic rejecting device for wireless power transmission,” in Proc. Int. Multi-Conf. Syst. Signals and Devices, 2011, pp. 1–3.
[63] X. Lin, L. Wang, and J. Sun, “Harmonic suppression by photonic bandgap on CPW-fed loop-slot antenna,” Microw. Opt. Tech. Lett., vol. 41, pp. 154–156, Apr. 2004.
[64] A. Andrenko, Y. Ikeda, and O. Ishida, “Application of PBG microstrip circuits for enhancing the performance of high-density substrate patch antenna,” Microw. Opt. Tech. Lett., vol. 32, pp. 340–344, Mar. 2002.
[65] I. Chang and B. Lee, “Design of defected ground structures for harmonic control of active microstrip antenna,” in Proc. IEEE Antennas Propagation Soc. Int. Symp., vol. 2, CA, Jun. 2002, pp. 852–855.
[66] Y. Chung, S. Jeon, and D. Ahn et al., “High isolation dual-polarized patch antenna using integrated defected ground structure,” IEEE Microw. Wireless Comp. Lett., vol. 14, no. 1, pp. 4–6, Jan. 2004.
[67] M. S. Ghaffarian and G. Moradi, “A novel harmonic suppressed coplanar waveguide (CPW)-fed slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 788-791, 2011.
[68] X.-C. Lin and L.-T. Wang, “A broadband CPW-fed loop slot antenna with harmonic control,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 323-325, 2003.
[69] C.-P. Lai, S.-C. Chiu, P. Hsu, and S.-Y. Chen, “On the fundamental resonance of slot loop antenna inductively fed by a coplanar waveguide,” IEEE Trans. Antenna Propag., vol. 61, no. 12, pp. 6191-6195, Dec. 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56353-
dc.description.abstract本論文主要是在探討開槽偶極天線與開槽迴圈天線的諧波抑制。本論文使用了一個新技術去抑制開槽偶極天線與開槽迴圈天線的諧波輻射,也就是使用了”耦合技術”在開槽偶極天線與開槽迴圈天線上。
首先,本論文介紹了四分之一波長阻抗轉換器與耦合技術。四分之一波長阻抗轉換器用來轉換終端狀態。而從耦合技術來看,一段耦合線可以被當作成一個濾波器去抑制特定的頻率。
本論文提出了使用共面波導饋入且附帶四分之一波長阻抗轉換器之開槽偶極與迴圈天線,此開槽偶極與迴圈天線的功能主要是去抑制諧波輻射。由於此開槽偶極與迴圈天線主要是根據傳統開槽偶極與迴圈天線變化而成,此附帶有四分之一波長阻抗轉換器之開槽偶極與迴圈天線相當的簡單且容易設計。此共面波導饋入之開槽偶極與迴圈天線皆擁有一對耦合線段,並且巧妙的使用了耦合技術去降低諧波輻射。四分之一波長阻抗轉換器使得耦合線段的其中之一輸入阜由短路轉換為開路,因此這個帶有一個開路與一個短路的耦合線段就像是一個帶拒型濾波器。只要設計這個帶拒型濾波器的工作頻率為二倍頻的諧波頻率,那麼此開槽偶極與迴圈天線就可以抑制二倍頻的諧波共振。
另外,本論文又提出一個使用共面波導饋入電感式耦合開槽迴圈天線,此開槽迴圈天線的功能亦是去抑制諧波輻射。因為短路在開槽天線上是一個直覺式的設計,此共面波導饋入電感式耦合開槽迴圈天線直接利用耦合線段上的短路去做設計。既然帶有一個開路與一個短路的耦合線段就像是一個帶拒型的濾波器,帶有兩個短路的耦合線段一樣也可以是一個帶拒型的濾波器。只要設計好耦合線段的長度,此耦合線段在此特定長度下可以相對應一個拒斥的頻率。只要將此特定的拒斥頻率設計在高倍頻的共振頻率上,此共面波導饋入電感式耦合開槽迴圈天線即可抑制高倍頻的諧波共振。
因為此開槽迴圈天線擁有一對耦合線段,每個耦合線段可以設計成擁有各自不同的電氣長度。各自擁有不同電氣長度的耦合線段可以抑制各自對應的特定頻率。較長電氣長度的耦合線段是用來抑制較低倍數的諧波頻率,而較短電氣長度的耦合線段是用來抑制較高倍數的諧波頻率。只要耦合線段各自對應的特定頻率是同時且各自地設計在不同倍數的諧波頻率,此共面波導饋入電感式非均衡耦合開槽迴圈天線可以同時抑制兩個高倍頻的諧波共振。
zh_TW
dc.description.abstractThis dissertation focuses on the development of slot dipole and slot loop antennas for harmonic suppression. As a new technique to suppress the harmonic radiation from the slot dipole and slot loop antennas, the coupling slots are introduced to the slot dipole and slot loop antennas.
In the beginning, the quarter-wave impedance and coupling technique are introduced. The quarter-wave impedance is used to transform terminations. From the coupling technique, a coupled line is used as a filter to suppress specific frequency.
CPW-fed slot dipole and loop antennas with quarter-wave impedance transformer are developed for harmonic suppression. Basing on the conventional slot dipole and loop antennas, the proposed CPW-fed slot dipole and loop antennas with quarter-wave impedance transformer are simple and easy to design. Both of the CPW-fed slot dipole and loop antennas possess a pair of coupled line section, and utilize the coupling technique to reduce the harmonic resonance. The quarter-wave impedance transformer lets a short circuit transform to an open circuit for one port of the coupled line section, and the coupled line section with a short and an open circuit works as a bandstop filter at a specific frequency. As long as designing the specific frequency at the 2nd harmonic frequency, the 2nd harmonic resonance of the slot dipole and loop antennas can be suppressed.
Next, a CPW-fed inductively coupled slot loop antenna for harmonic suppression is proposed. Because short circuit is an intuition solution for slot type antenna, the CPW-fed inductively coupled slot loop antenna utilizes the original short circuit to terminate a pair of coupled line section. Since the coupled line section with a short and an open circuits can works as a bandstop filter, it can also work as a bandstop filter with two short circuits for a specific electrical length at a specific frequency. As long as the specific frequency is designed at the higher order frequencies, that higher order harmonic resonance of the CPW-fed inductively coupled slot loop antenna can be suppressed.
Since the CPW-fed inductively coupled slot loop antenna possesses a pair of coupled line section, each one of the pair of the coupled line section can possess different electrical length. Different electrical length of the pair of coupled line section can suppress different specific frequencies. The longer electrical length of the pair of coupled line section is utilized to suppress the lower harmonic frequency, and the shorter electrical length of the pair of coupled line section is utilized to suppress the higher harmonic frequency. As long as two different specific frequencies are designed at the higher order frequencies simultaneously, two higher order harmonic resonances of the CPW-fed inductively coupled unbalanced slot loop antenna can be suppressed simultaneously.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:24:45Z (GMT). No. of bitstreams: 1
ntu-103-D95942010-1.pdf: 1558841 bytes, checksum: d2fcaa76b405af7a58835ce9f2749421 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 i
ABSTRACT iii
CONTENTS vii
LIST OF FIGURES xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.3 Contributions 5
1.4 Organization of the Dissertation 7
Chapter 2 Design Theory 9
2.1 Quarter-Wave Impedance Transformer 9
2.2 Coupling Technique 12
Chapter 3 CPW-fed Slot Dipole and Loop Antennas with Quarter-Wave Impedance Transformer for Harmonic Suppression 19
3.1 Introduction 20
3.2 Antenna Structure and Design 22
3.2.1 CPW-Fed Slot Dipole Antenna with Quarter-Wave Impedance Transformer 22
3.2.2 CPW-Fed Slot Loop Antenna with Quarter-Wave Impedance Transformer 29
3.3 Experimental Results and Discussion 37
3.3.1 CPW-Fed Slot Dipole Antenna with Quarter-Wave Impedance Transformer 37
3.3.2 CPW-Fed Slot Loop Antenna with Quarter-Wave Impedance Transformer 40
3.4 Conclusion 42
Chapter 4 CPW-fed Inductively Coupled Slot Loop Antenna for Harmonic Suppression 61
4.1 Introduction 62
4.2 Antenna Structure and Design 64
4.3 Experimental Results and Discussion 68
4.4 Conclusion 71
Chapter 5 Conclusions 81
5.1 Design Criteria 81
5.2 Summary 82
REFERENCE 85
PUBLICATION LIST 97
dc.language.isoen
dc.subject共面波導zh_TW
dc.subject諧波抑制zh_TW
dc.subject開槽天線zh_TW
dc.subjectHarmonic suppressionen
dc.subjectslot antennasen
dc.subjectcoplanar waveguidesen
dc.title可抑制諧波之開槽耦合開槽偶極及迴圈天線zh_TW
dc.titleSlot Coupled Slot Dipole and Loop Antennas with Harmonic Suppressionen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee李學智(Hsueh-Jyh Li),鄭士康(Shyh-Kang Jeng),楊成發(Chang-Fa Yang),毛紹綱(Shau-Gang Mao),陳士元(Shih-Yuan Chen)
dc.subject.keyword諧波抑制,共面波導,開槽天線,zh_TW
dc.subject.keywordHarmonic suppression,coplanar waveguides,slot antennas,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2014-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved