Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56339
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王奕翔(I-Hsiang Wang)
dc.contributor.authorHung-Yi Wuen
dc.contributor.author吳泓毅zh_TW
dc.date.accessioned2021-06-16T05:24:09Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citation[1] Y. Aizenbud and Y. Shkolnisky. A max-cut approach to heterogeneity in cryo- electron microscopy. Mathematical Analysis and Applications, 479(1):1004–1029, 2019.
[2] J. Andén, E. Katsevich, and A. Singer. Covariance estimation using conjugate gra- dient for 3d classification in cryo-em. In 2015 IEEE 12th International Symposium
on Biomedical Imaging (ISBI), pages 200–204, 2015.
[3] A. S. Bandeira, M. Charikar, A. Singer, and A. Zhu. Multireference Alignment using Semidefinite Programming, Aug. 2013. arXiv:1308.5256.
[4] S.-C. Chung, S.-H. Wang, P.-Y. Niu, S.-Y. Huang, W.-H. Chang, and I.-P. Tu. Two- stage dimension reduction for noisy high-dimensional images and application to cryogenic electron microscopy., 2020. arXiv:1911.09816.
[5] G. Cordasco and L. Gargano. Community detection via semi-synchronous label propagation algorithms. CoRR, abs/1103.4550, 2011.
[6] S. Fortunato and D. Hric. Community detection in networks: A user guide. Physics
Reports, 659(11):1–44, 2016.

[7] J. Frank, M. Radermacher, T. Wagenknecht, and A. Verschoor. Methods in
Enzymology, page 3. Academic Press, San Diego, 1998.
[8] G.T.Herman and M.Kalinowski. Classification of heterogeneous electron micro- scopic projections into homogeneous subsets. Ultramicroscopy, 209:327–338, 2008.
[9] G. Herman and M. Kalinowski. Classification of heterogeneous electron microscopic projections into homogeneous subsets. Ultramicroscopy, 108:327–38, 04 2008.
[10] H. Hung, P.-S. Wu, I.-P. Tu, and S.-Y. Huang. On multilinear principal component analysis of order-two tensors. Biometrika, 99:569–583, 2012.
[11] A. Karataş and S. Şahin. Application areas of community detection: A review. In 2018 International Congress on Big Data, Deep Learning and Fighting Cyber
Terrorism (IBIGDELFT), pages 65–70, 2018.
[12] E. Katsevich, A. Katsevich, and A. Singer. Covariance matrix estimation for the cryo-em heterogeneity problem. SIAM Journal on Imaging Sciences, 8(1):126–185, 2015.
[13] F. Natterer. The Mathematics of Computerized Tomography. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 2001.
[14] P. Penczek, M. Radermacher, and J. Frank. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy, 40:33–53, 1992.
[15] P. A. Penczek, M. Kimmel, and C. M. Spahn. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-em images. Structure, 19:1582–1590, 2011.

[16] P. Pons and M. Latapy. Computing communities in large networks using random walks. In p. Yolum, T. Güngör, F. Gürgen, and C. Özturan, editors, Computer
and Information Sciences - ISCIS 2005, pages 284–293, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
[17] A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based ex- ternal cluster evaluation measure. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 410–420, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
[18] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4): 1118–1123, 2008.
[19] S. H. W. Scheres. A bayesian view on cryo-em structure determination. In 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pages 1321–1321, 2012.
[20] M. Shatsky, R. J. Hall, E. Nogales, J. Malik, and S. E. Brenner. Automated multi-model reconstruction from single-particle electron microscopy data. Structural
Biology, 170:98–108, 2010.
[21] A. Singer. Mathematics for cryo-electron microscopy. In International Congress of
Mathematicians, Mar. 2018.
[22] H. D. Tagare, A. Kucukelbir, F. J. Sigworth, H. Wang, and M. Rao. Directly re- constructing principal components of heterogeneous particles from cryo-em images.
Journal of Structural Biology, 191(2):245 – 262, 2015.

[23] E. J. Verbeke, Y. Zhou, A. P. Horton, A. L. Mallam, D. W. Taylor, and E. M. Marcotte. Separating distinct structures of multiple macromolecular assemblies from cryo-em projections. Journal of Structural Biology, 209(1):107416, 2020.
[24] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge University Press, 2012.
[25] D. B. West. Introduction to Graph Theory. Prentice Hall, 2001. [26] Wikipedia. 低溫電子顯微鏡 — Wikipedia, the free encyclopedia
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56339-
dc.description.abstract低溫電子顯微術是研究巨型生物分子結構最重要的方法之一,能夠以原子的尺度描繪出分子的結構。2017年的諾貝爾化學獎就頒給了jacques Dubochet(杜波克特)、Joachim Frank(法蘭克)、與Richard Henderson(韓德森)以表揚他們對於低溫電子顯微術的重要貢獻。然而現今還是存在許未尚未解決的問題,其中目標分子於溶液中的結構差異所導致的異質性問題將是此研究的主要方向。在早期的研究中都會假設每張由低溫電子顯微鏡得到的分子照片都是來自相同種類且相同構型的分子,但事實上即使經過純化,有一些分子在溶液仍會以多種形態存在,這使得早期的演算法假設不成立。大部分的演算法都是利用三維的資訊來處理資料的異質性問題,也因此在處理的過程中會需要去估計分子照片對應到原來結構的投影角度為何,或是建立一個初始的三維結構。所以當三維結構的資訊因為構型差異大導致難以估計時,這些方法的效果也會隨之變差。我們這邊提出了兩個演算法來處理低溫電子顯微術的異質性問題,兩個方法都只用到了二維的資訊來分類三維的結構差異,第一種方法用於處理構型差異較大的資料,先利用二階段降維將照片去雜訊後,利用重建後的照片計算交互相關性並建立圖,再利用社群發現的演算法將照片分群後,對每個分群取平均得到更高的訊雜比,最後再計算平均照片間的共通線相似度並建圖,再利用社群發現的演算法分群,此時輸出的結果就當作構型的分類;第二種方法則是捨棄取平均的步驟,首先計算一部分分子照片的交互共通線距離後,同樣是依靠建圖和社群發現演算法分類構型,再將剩下的照片指派到已分類好的社群中,藉此也可以減少共通線距離的計算量。我們將兩種方法測試於兩個異質性的人造資料集,其中一個是異質性問題中的最具有代表性的資料集之一,而另一個資料集則是包含多種構型的資料集,最後我們討論各個參數帶來的影響與結果。zh_TW
dc.description.abstractCryogenic Electron microscopy (cryo-EM) is one of the most promising instruments for determining the structures of macromolecular protein complexes in near-atomic resolution. In fact, 2017 Nobel Prize in Chemistry was awarded to three scientists for their significant contributions in developing the technology. Nevertheless, there are still open challenges unsolved and here we addressed the heterogeneity problem inherent in cryo-EM data set. Originally, single particle analysis assumes the projection images come from the same molecule with the same structure conformation, but in fact, some molecules have various conformation states in the solution even after purification. Tradition approaches address this problem at 3D level. Thus, they require the information of 3D orientations and a consensus 3D structure before starting analyze the 3D variability. Besides, these approaches also suffer from potential 3D alignment error which may affect the accuracy of the analysis result. We apply two methods to address the heterogeneity problem. The first one applies two-stage dimension reduction to denoise the images then constructs a graph based on the pairwise correlation of the denoised images. Next, community detection algorithms are applied to group similar images. Averaged images that enjoy higher SNR are thus obtained by averaging each group. Finally, a second graph is constructed based on the common line distances among averaged images. The community detection algorithms are then conducted on the graph. Each detected community is considered as a conformation. The second method obviates the step of averaging images, we directly compute the pairwise common line distances among projection images. Firstly, we construct a graph based on the pairwise common line distances among a small fraction of images and run community detection algorithms to partition the images into several communities. Secondly, we assign the rest images to their nearest community based on common line distances. We test these two approaches on two synthetic heterogeneous data sets, one of them is the benchmark data-set in heterogeneity problem and the other one is the first data-set containing multiple conformational states and we discuss the result and influences of each parameter.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:24:09Z (GMT). No. of bitstreams: 1
U0001-2707202014232800.pdf: 2029553 bytes, checksum: 99474839207e0d55d274d7ea6c03585b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄Page
摘要3
Abstract5
目錄7
圖目錄11
表目錄13
第一章
介紹1
1.1研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
第二章 數學模型5
2.1低溫電顯重建問題. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2異質性低溫電顯問題. . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3異質性問題方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1共通線法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
第三章 文獻探勘(先備知識)11
3.1 Reference free alignment. . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2去雜訊-2sdr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3社群偵測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4共通線相似度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5建圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
第四章 演算法17
4.1算法一. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2算法二. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
第五章 實驗與模擬結果19
5.1實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.1資料生成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2加入雜訊. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.3衡量結果(V-measure). . . . . . . . . . . . . . . . . . . . . . . . 20
5.2參數選擇與比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.1建圖的選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 K近鄰圖與交互K近鄰圖. . . . . . . . . . . . . . . . . . . . . . 23
5.2.3鄰居與構型的數量. . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.4演算法的選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.5邊的權重. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.1方法一的結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2方法二的結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3比較完全連接圖. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
第六章 討論39
參考文獻41
附錄A —結果45
A.1方法一於資料集一. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
dc.language.isozh-TW
dc.subject傅立葉切片理論zh_TW
dc.subject低溫電子顯微術zh_TW
dc.subject異質性問題zh_TW
dc.subject社群偵測zh_TW
dc.subject共通線距離zh_TW
dc.subjectHeterogeneity problemen
dc.subjectCryo-EMen
dc.subjectCommunity detectionen
dc.subjectCommon line distanceen
dc.subjectFourier-slice Theoremen
dc.title利用網路分析作用於低溫電子顯微鏡投影照片分類三維構型zh_TW
dc.titleGrouping 3D Structure Conformations using Network Analysis on 2D CryoEM Projection Imagesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor杜憶萍(I-Ping Tu)
dc.contributor.oralexamcommittee章為皓(Wei-Hau Chang),陳定立(Ting-Li Chen),李政德(Cheng-Te Li)
dc.subject.keyword低溫電子顯微術,異質性問題,傅立葉切片理論,共通線距離,社群偵測,zh_TW
dc.subject.keywordCryo-EM,Heterogeneity problem,Fourier-slice Theorem,Common line distance,Community detection,en
dc.relation.page45
dc.identifier.doi10.6342/NTU202001905
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
U0001-2707202014232800.pdf
  未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved