請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56333完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林祥泰(Shiang-Tai Lin) | |
| dc.contributor.author | Yi-Hung Li | en |
| dc.contributor.author | 李奕鋐 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:23:53Z | - |
| dc.date.available | 2015-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | 1. 經濟部能源局(Bureau of Energy, Ministry of Economic Affairs, R.O.C.), 101年能源統計年報.
2. NREL, Best Research-Cell Efficiency, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. 2014. 3. Ling, Q.D., et al., Synthesis and dynamic random access memory behavior of a functional polyimide. Journal of the American Chemical Society, 2006. 128(27): p. 8732-8733. 4. Lin, Y.Y., et al., Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2009. 131(10): p. 3644-3649. 5. Huang, Y.C., et al., Employing an amphiphilic interfacial modifier to enhance the performance of a poly(3-hexyl thiophene)/TiO2 hybrid solar cell. Journal of Materials Chemistry, 2011. 21(12): p. 4450-4456. 6. Zeng, T.W., et al., Correlating Interface Heterostructure, Charge Recombination, and Device Efficiency of Poly(3-hexyl thiophene)/TiO2 Nanorod Solar Cell. Langmuir, 2011. 27(24): p. 15255-15260. 7. Chen, F., et al., Nonvolatile write-once read-many-times memory device based on an aromatic hyperbranched polyimide bearing triphenylamine moieties. Rsc Advances, 2012. 2(33): p. 12879-12885. 8. Wang, D., et al., A new DRAM-type memory devices based on polymethacrylate containing pendant 2-methylbenzothiazole. Materials Chemistry and Physics, 2012. 134(1): p. 273-278. 9. Kurosawa, T., T. Higashihara, and M. Ueda, Polyimide memory: a pithy guideline for future applications. Polymer Chemistry, 2013. 4(1): p. 16-30. 10. Lin, J.F., et al., Molecular Structure Effect of Pyridine-Based Surface Ligand on the Performance of P3HT:TiO2 Hybrid Solar Cell. Acs Applied Materials & Interfaces, 2013. 5(3): p. 1009-1016. 11. Hou, F.-C., The effects of coplanarity, fused ring and cyano side groups on the electronic band structure of Poly(3-hexylthiophene). 2013. 12. Chang, C.H., et al., Improved charge separation and transport efficiency in poly(3-hexylthiophene)-TiO(2) nanorod bulk heterojunction solar cells. Journal of Materials Chemistry, 2008. 18(19): p. 2201-2207. 13. Lin, Y.Y., et al., Improved performance of polymer/TiO(2) nanorod bulk heterojunction photovoltaic devices by interface modification. Applied Physics Letters, 2008. 92(5). 14. Liu, G., et al., Electrical conductivity switching and memory effects in poly(N-vinylcarbazole) derivatives with pendant azobenzene chromophores and terminal electron acceptor moieties. Journal of Materials Chemistry, 2011. 21(16): p. 6027-6033. 15. Lee, W.Y., et al., New Donor-Acceptor Oligoimides for High-Performance Nonvolatile Memory Devices. Chemistry of Materials, 2011. 23(20): p. 4487-4497. 16. Kuorosawa, T., et al., High Performance Volatile Polymeric Memory Devices Based on Novel Triphenylamine-based Polyimides Containing Mono- or Dual-Mediated Phenoxy Linkages. Macromolecules, 2010. 43(3): p. 1236-1244. 17. Group, K.R., http://www.ndsu.edu/pubweb/kose/Research.html. 18. Hofmann, S., et al., Singlet exciton diffusion length in organic light-emitting diodes. Physical Review B, 2012. 85(24). 19. Bruno, A., et al., Determining the Exciton Diffusion Length in a Polyfluorene from Ultrafast Fluorescence Measurements of Polymer/Fullerene Blend Films. Journal of Physical Chemistry C, 2013. 117(39): p. 19832-19838. 20. Ichikawa, M., Measurement of exciton diffusion lengths of phthalocyanine derivatives based on interlayer excitation transfer. Thin Solid Films, 2013. 527: p. 239-243. 21. Gunes, S., H. Neugebauer, and N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chemical Reviews, 2007. 107(4): p. 1324-1338. 22. Scharber, M.C., et al., Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Advanced Materials, 2006. 18(6): p. 789-+. 23. Brabec, C.J., et al., Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials, 2001. 11(5): p. 374-380. 24. Hung, Y.-C., Band Engineering of Conducting Polymers via First Principle Calculations. 2012. 25. Samdal, S., E.J. Samuelsen, and H.V. Volden, MOLECULAR-CONFORMATION OF 2,2'-BITHIOPHENE DETERMINED BY GAS-PHASE ELECTRON-DIFFRACTION AND AB-INITIO CALCULATIONS. Synthetic Metals, 1993. 59(2): p. 259-265. 26. Raos, G., A. Famulari, and V. Marcon, Computational reinvestigation of the bithiophene torsion potential. Chemical Physics Letters, 2003. 379(3-4): p. 364-372. 27. Roncali, J., Molecular engineering of the band gap of pi-conjugated systems: Facing technological applications. Macromolecular Rapid Communications, 2007. 28(17): p. 1761-1775. 28. Cremer, D., Moller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2011. 1(4): p. 509-530. 29. Tsuzuki, S., T. Uchimaru, and M. Mikami, Intermolecular interaction between hexafluorobenzene and benzene: Ab initio calculations including CCSD(T) level electron correlation correction. Journal of Physical Chemistry A, 2006. 110(5): p. 2027-2033. 30. Magnasco, V., Methods of Molecular Quantum Mechanics:An Introduction to Electronic Molecular Structure University of Genoa, Genoa, Italy, 2009. 31. Ahlrichs, R. and W. Kutzelnigg, Ab-initio calculations of small hydrides including electron correlation : II. Preliminary results for the CH4 ground state. Chemical Physics Letters, 1968. 1(13): p. 651-654. 32. Tinland, B., An ab initio SCF LCAO MO study of the electronic structure of ammonia. Chemical Physics Letters, 1968. 2(7): p. 433-434. 33. Walter Thirring, P.O.U., The Schrodinger equation. 1977. 34. Chan, L.-C., First Principle Analysis of the Polymer Memory Device Based on Donor-Acceptor Copolymers. 2012. 35. Cramer, C.J., Essentials of Computational Chemistry Theories and Models, 2nd edition. Department of Chemistry and Supercomputing Institute,University of Minnesota, USA. 36. Kim, K. and K.D. Jordan, COMPARISON OF DENSITY-FUNCTIONAL AND MP2 CALCULATIONS ON THE WATER MONOMER AND DIMER. Journal of Physical Chemistry, 1994. 98(40): p. 10089-10094. 37. Becke, A.D., DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR. Physical Review A, 1988. 38(6): p. 3098-3100. 38. Chai, J.-D. and M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Physical Chemistry Chemical Physics, 2008. 10(44): p. 6615-6620. 39. Lin, Y.S., et al., Long-range corrected hybrid meta-generalized-gradient approximations with dispersion corrections. Journal of Chemical Physics, 2012. 136(15). 40. Becke, A.D., Density-functional thermochemistry .5. Systematic optimization of exchange-correlation functionals. Journal of Chemical Physics, 1997. 107(20): p. 8554-8560. 41. Grimme, S., Density functional theory with London dispersion corrections. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2011. 1(2): p. 211-228. 42. Ehrlich, S., J. Moellmann, and S. Grimme, Dispersion-Corrected Density Functional Theory for Aromatic Interactions in Complex Systems. Accounts of Chemical Research, 2013. 46(4): p. 916-926. 43. Gaussian 09 Revision D.01 Release Notes http://www.gaussian.com/g_tech/rel_notes.pdf. 2013. 44. Lin, B.C., C.P. Cheng, and Z.P.M. Lao, Reorganization energies in the transports of holes and electrons in organic amines in organic electroluminescence studied by density functional theory. Journal of Physical Chemistry A, 2003. 107(26): p. 5241-5251. 45. Remya, K. and C.H. Suresh, Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small non-covalent dimers? A benchmark study using gaussian09. Journal of Computational Chemistry, 2013. 34(15): p. 1341-1353. 46. Cohen, A.J., P. Mori-Sanchez, and W.T. Yang, Challenges for Density Functional Theory. Chemical Reviews, 2012. 112(1): p. 289-320. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56333 | - |
| dc.description.abstract | 於此次的研究中,我們運用了第一原理計算來探討以二噻吩為主鏈的分子中,改變其共平面性的機制。我們在二噻吩不同位置導入具不同推拉電子能力的官能基團,研究其對共平面性的改變,以及其能階位置的影響。我們研究的官能基團包含甲基(弱的推電子基團) 、氰基及甲氧基(強推電子基),以及胺基(拉電子基)等。再研究方法上,我們先探討了不同的函數和基底函數的組合以確認計算方法的準確性,再進行分子結構的優化以及單點能量掃描。從結果的分析發現,影響二噻吩為主鏈之分子的共平面性之原因主要有三:二噻吩的共振效應、官能基團與噻吩間的排斥(立體障礙)與吸引。當引入的官能基為電子供給者時,會對增強二噻吩的共振的效應,增加平面性。若引入的官能基為電子為接受者時,則對二噻吩的共振效果沒有影響。另外,官能基與噻吩間的排斥作用,會破壞共平面性,吸引作用則會降低二噻吩二面角能障,通常會讓共平面性變好。而最後我們亦針對這些分子對光電性質的影響進行討論,我們發現共平面性以及官能基的性質可對分子的能隙產生影響,其中共平面性可改變分子的能隙寬度;官能基的性質則可改變最高分子佔領軌域及最低未佔領分子軌域的位置。 | zh_TW |
| dc.description.abstract | In this work, we use the first principle calculation to investigate the mechanism for the coplanarity of bithiophene-based molecules. We introduce different types of functional groups (electron donating/withdrawing) at different positions on bithiophene to investigate the effects on the change of coplanarity and the positions of energy levels.
The functional groups that we investigate include CH3 (weak electron donating group), CN and OCH3 (strong electron donating group), and NH2 (electron withdrawing group). For the computational methods, first we investigate the different functional/basis set settings to check the accuracy for the methods. Then the structure optimization and single point energy scan are carried out. From the analysis of results, we discover that three factors can influence the coplanarity of bithiophene-based molecules: the π-resonance effect of bithiophene, the expulsion (steric effect) and attraction between functional groups and thiophene. When introducing electron donating functional group, the π-resonance effect of bithiophene will be enhanced and improve the coplanarity. When introducing electron withdrawing functional group, it has no influence on π-resonance effect of bithiophene. In addition, the expulsion between functional groups and thiophene will destroy the coplanarity; the attraction, on the other hand, can lower the bond angle of bithiophene and enhance the coplanarity. Finally we discuss the effects on optoelectronic properties for these bithiophene-based molecules. We discover that the coplanarity and types of functional groups can affect the energy levels. The former can change the HOMO-LUMO gaps, and the latter can change the positions of HOMO and LUMO levels of the molecules. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:23:53Z (GMT). No. of bitstreams: 1 ntu-103-R01524088-1.pdf: 3584976 bytes, checksum: 76c2b4fee694f126fb11737aa6ffe3a5 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Types of Solar Cells 2 1.3 The Outlook of OPVC 4 1.4 Device Architecture and Light Conversion Mechanism of OPVC 4 1.5 Power Conversion Efficiency of OPVC 8 1.6 Band Gap Engineering of Conjugated Polymer in OPVC 10 1.7 Bithiophene-based Molecules 11 Chapter 2 Theory 14 2.1 Ab initio method 14 2.2 Born-Oppenheimer approximation 15 2.3 Density Functional Theory 16 2.3.1 Hohenberg-Kohn equation 17 2.3.2 Kohn-Sham Equation 19 2.3.3 Local Density Approximations 20 2.3.4 Hybrid Functional Method 21 Chapter 3 Computational Details 24 3.1 The Organic Molecular Structures in This Thesis 24 3.2 Computational Methods in This Study 27 3.3 Selection of Functionals and Basis Set 29 Chapter 4 Results and Discussion 33 4.1 Equilibrium Geometry of Bithiophene-based molecules 33 4.2 Bithiophene 38 4.3 CH3-bithiophene 39 4.4 CN-bithiophene 43 4.5 OCH3-bithiophene 47 4.6 NH2-bithiophene 51 4.7 Factors Influencing Coplanarity of Bithiophene Derivatives 55 4.8 Optoelectronic Properties of Bithiophene-based Molecules 58 Chapter 5 Conclusion 64 REFERENCE 66 | |
| dc.language.iso | en | |
| dc.subject | 共平面性 | zh_TW |
| dc.subject | 二?吩 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | first principle calculation | en |
| dc.subject | coplanarity | en |
| dc.subject | bithiophene | en |
| dc.title | 運用第一原理計算研究影響二噻吩類型分子共平面性之因素 | zh_TW |
| dc.title | A First-Principles Study on the Factors Influencing the Coplanarity of Bithiophene-based Molecules | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡政達(Jeng-Da Chai),郭錦龍(Chin-Lung Kuo),趙基揚(Chi-Yang chao) | |
| dc.subject.keyword | 共平面性,二?吩,第一原理計算, | zh_TW |
| dc.subject.keyword | coplanarity,bithiophene,first principle calculation, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
