請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56329
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張上鎮(Shang-Tzen Chang) | |
dc.contributor.author | Po-Cheng Yu | en |
dc.contributor.author | 俞伯誠 | zh_TW |
dc.date.accessioned | 2021-06-16T05:23:43Z | - |
dc.date.available | 2019-09-05 | |
dc.date.copyright | 2014-09-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-15 | |
dc.identifier.citation | 方從兵、宛曉春、江昌俊(2005)黃酮類化合物生物合成的研究進展(綜述)。安徽農業大學學報32:498-504。
呂葳婕(2007)類黃酮的合成方法與藥理測試。嘉南藥理科技大學藥物科技研究所碩士論文。67頁。 吳薛明、許婷婷、儲建林、何冰芳(2010)黃酮類化合物酶法醣基化修飾的研究進展。中國天然藥物 8:1432-1434。 林岳賢(2008)土肉桂葉部之生理活性成分分析研究。中興大學化學系所碩士論文。155頁。 林庭宇(2011)土肉桂葉子熱水抽出物對動物降血脂之功效及其成分解析。中興大學森林系所碩士論文。159頁。 柯千惠(2012)利用 STZ誘發之糖尿病大鼠及C2C12細胞株探討土肉桂葉精油之抗糖尿病作用機制。中山醫學大學營養學研究所碩士論文。112頁。 胡大維、林耀堂、何政坤(1985)台灣土肉桂葉部精油化學成分之天然變異。臺灣省林業試驗所檢驗報告78:45-62。 陳科如(2007)台灣土肉桂葉中類黃酮糖苷類胰島素活性之研究探討。朝陽科技大學生物科技研究所碩士論文。115頁。 張上鎮、鄭森松、王升陽(2009)土肉桂飄香—葉子的神奇功效及應用。臺灣林業 35:116-122。 張上鎮(2013)由精油保存性選育優良之土肉桂品系。林業研究專訊 20:63-66。 張碧芳(2004)溫度對作物的影響及熱休克蛋白質的功能。119-156。行政院農業委員會動植物防疫檢疫局。植物重要防檢疫病害診斷鑑定技術研習會專刊(三)。臺北,臺灣。160頁。 蔡明桐(2006)土肉桂枝條抽出物之生物活性評估。臺灣大學森林系碩士論文。78頁。 翁芸芳(1998)黃酮類對人體細胞色素P450代謝黃麴毒素之調節作用。中醫藥雜誌 9:89。 Abdallah, H. M., M. A. Mohamed, A. M. Abdou, M. M. Hamed, A. B. Abdel-Naim and O. M. Ashour (2013) Protective effect of Centaurea pallescens Del. against CCl4-induced injury on a human hepatoma cell line (Huh7). Med Chem Res 22: 5700-5706. Afanasʹev, I. B., A. I. Dcrozhko, A. V. Brodskii, V. A. Kostyuk and A. I. Potapovitch (1989) Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol 38: 1763-1769. Aiamla-or, S., T. Nakajima, M. Shigyo and N. Yamauchi (2012) Pheophytinase activity and gene expression of chlorophyll-degrading enzymes relating to UV-B treatment in postharvest broccoli (Brassica oleracea L. Italica Group) florets. Postharvest Bio Te. 63: 60-66. Aiamla-or, S., N. Yamauchi, S. Takino and M. Shigyo (2009) Effect of UV-A and UV-B irradiation on broccoli (Brassica oleracea L. Italica Group) floret yellowing during storage. Postharvest Biol Tec 54: 177-179. Brand-Williams, W., M. E. Cuvelier and C. Berset (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol 28: 25-30. Brown, D. E., A. M. Rashotte, A. S. Murphy, J. Normanly, B. W. Tague, W. A. Peer, L. Taiz and G. K. Muday (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126: 524-535. Buer, C. S., N. Imin and M. A. Djordjevic (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52: 98-111. Cantos, E., C. Garcı’a-Viguera, S. d. Pascual-Teresa and F. A. Toma’s-Barbera’n (2000) Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. J Agric Food Chem 48: 4606-4612. Chen, Y. H., Z. S. Yang, C. C. Wen, Y. S. Chang, B. C. Wang, C. A. Hsiao and T. L. Shih (2012) Evaluation of the structure–activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chem 134: 717-724. Chua, M. T., Tung, Y. T. and Chang, S. T. (2008). Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresource tech 99: 1918-1925. Darras, A. I., V. Demopoulos and C. Tiniakou (2012) UV-C irradiation induces defence responses and improves vase-life of cut gerbera flowers. Postharvest Bio Tec 64: 168-174. Duell-Pfaff N. and E. Wellmann (1982) Involvement of phytochrome and a blue light photoreceptor in UV-B induced flavonoid synthesis in parsley (Petroselinum hortense Hoffm.) cell suspension cultures. Planta 156: 213-217. El-Sayed, N. H., N. M. Omara, A. K. Yousef, A. M. Farag and T. J. Mabry (2001) Kaempferol triosides from Reseda muricata. Phytochemistry 57: 575-578. Eichholz, I., S. Rohn, A. Gamm, N. Beesk, W. B. Herppich and L. W. Kroh (2012) UV-B-mediated flavonoid synthesis in white asparagus (Asparagus officinalis L.). Food Res Int 48: 196-201. Fang, S. H., Y. K. Rao and Y. M. Tzeng (2005) Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-c-activated murine macrophages. Bioorgan Med Chem 13: 2381-2388. Fitch, W. L., M. McGregor, A. R. Katritzky, A. Lomaka, R. Petrukhin and M. Karelson (2002) Prediction of ultraviolet spectral absorbance using quantitative structure-property relationships. J Chem Inf Comput Sci 42: 830-840. Gachon, C. M., M. Langlois-Meurinne and P. Saindrenan (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10: 542-549. Gaxiola, R. A., G .R. Fink and K. D. Hirschi (2002) Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol 129: 967-973. Glasgen, W. E., A. Rose, J. Madlung, W. Koch, J. Gleitz and H. U. Seitz (1998) Regulation of enzymes involved in anthocyanin biosynthesis in carrot cell cultures in response to treatment with ultraviolet light and fungal elicitors. Planta 204: 490-498 Grotewold, E. (2004) The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta 219: 906-909. Hannach, G. and A. C. Sigleo (1998) Photoinduction of UV-absorbing compounds in six species of marine phytoplankton. Mar Ecol Prog Ser 147: 207-222. Harbaum-Piayda, B., B. Walter, G. B. Bengtsson, E. M. Hubbermann, W. Bilger and K. Schwarz (2010) Influence of pre-harvest UV-B irradiation and normal or controlled atmosphere storage on flavonoid and hydroxycinnamic acid contents of pak choi. Postharvest Biol Tec 56: 202-208. Harzdina, G. and G. J. Wagner. (1985) Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane-associated enzyme complexes. Arch Biochem Biophys 237: 88-100. Herrmann, K. M. and L. M. Weaver (1999) The shikimate pathway. Annu Rev Plant Phys 55: 473-503. Helsper, J. P. F. G., C. H. R. de Vos, F.M. Maas, H. H. Jonker, H. C. ven den Broeck, W. Jordi, C. S. Pot, L. C. P. Keizer and Ad H. C. M. Schapendonk (2003) Response of selected antioxidants and pigments in tissues of Rosa hybrida and Fuchsia hybrida to supplemental UV-A exposure. Physiologia Plantarum 117: 171-178. Hollman, P. C. (2004) Absorption, bioavailability, and metabolism of flavonoids. Pharm Bio 42: 74-83. Hwang, E. J., J. W. Huh, M. M. Choi, S. Y. Choi, H. N. Hong and S. W. Cho (2008) Inhibitory effects of gallic acid and quercetin on UDP-glucose dehydrogenase activity. FEBS Lett 582: 3793-3797. Iacopin, P., M. Baldi, P. Storchi, and L. Sebastiani (2008) Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J Food Compos Anal 21: 589-598. Jacobs, M., P. H. Rubery (1988) Naturally-occurring auxin transport regulators. Science 241: 346-349. Jansen, M. A. K., K. Hectors, N. M. OʹBrien, Y. Guisez and G. Potters (2008) Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Sci. 175: 449-458. Jenkins, G. I. (2009) Signal Transduction in Responses to UV-B Radiation. Annu. Rev. Plant Biol. 60: 407-431. Jiang, J. R., S. Yuan, J. F. Ding, S. C. Zhu, H. D. Xu, T. Chen, X. D. Cong, W. P. Xu, H. Ye and Y. J. Dai (2008) Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl Microbiol Biot 81: 647-657. Jones, P. and T. Vogt (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213: 164-174. Jones, P., B. Messner, J. I. Nakajima, A. R. Schaffnerand K. Saito (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278: 43910-43918. Kaewsuksaeng, S., Y. Urano, S. Aiamla-or, M. Shigyo and N. Yamauchi (2011) Effect of UV-B irradiation on chlorophyll-degrading enzyme activities and postharvest quality in stored lime (Citrus latifolia Tan.) fruit. Postharvest Biol Tec 61: 124-130. Kaffarnik, F., H. K. Seidlitz, J. Obermaier, H. Sandermann Jr and W. Heller (2006) Environmental and developmental effects on the biosynthesis of UV-B screening pigments in Scots pine (Pinus sylvestris L.) needles. Plant Cell Environ 29: 1484-1491. Kanazawa, K., T. Hashimoto, S. Yoshida, P. Sungwon and S. Fukuda (2012) Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables. J. Agric. Food Chem. 60: 4359-4368. Kreft, S., B. Strukelj, A. Gaberscik and I. Kreft (2002) Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. J Exp Bot 53: 1801-1804. Kuhlmann F. and C. Muller (2009) Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects. Environ Exp Bot 66: 61-68. Kuo, Y. C., C. K. Lu, L. W. Huang, Y. H. Kuo, C. Chang, F. L. Hsu and T. H. Lee (2005) Inhibitory effects of acylated kaempferol glycosides from the leaves of Cinnamomum kotoense on the proliferation of human peripheral blood mononuclear cells. Planta Med 71: 412-415. Landry, L. C., C. C. S. Chapple and R. L. Last (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-b injury and oxidative damage. Plant Physiol 109: 1159-1166. Lee, S. S., H. C. Lin and C. K. Chen (2008) Acylated flavonol monorhamnosides, α-glucosidase inhibitors, from Machilus philippinensis. Phytochemistry 69: 2347-2353. Lee, S., S. C. Chung, S. H. Lee, W. Park, I. Oh, W. Mar, J. Shin and K. B. Oh (2012) Acylated kaempferol glycosides from Laurus nobilis leaves and their inhibitory effects on Na¬+/K¬+-adenosine triphosphatase. Biol Pharm Bull 35: 428-432. Lemoine, M. L., L. Maria, P. M. Civello, A. R. Chaves and G. A. Martinez (2008) Effect of combined treatment with hot air and UV-C on senescence and quality parameters of minimally processed broccoli (Brassica oleracea L. var. Italica). Postharvest Biol Tec 48: 15-21. Li, Y., W. Yang, Y. Ma, J. Sun, L. Shan, W. D. Zhang and B. Yu (2011) Synthesis of Kaempferol 3-O-[2ʹʹ,3ʹʹ- and 2ʹʹ,4ʹʹ-di-O-(E)-p-coumaroyl]-α-L- rhamnopyranosides. Synlett 7: 915-918. Lin, H. Y. and S. T. Chang (2013) Antioxidant potency of phenolic phytochemicals from the root extract of Acacia confusa. Ind Crop Prod 49: 871-878. Lin, T. Y., J. W. Liao, S. T. Chang and S. Y. Wang (2011) Antidyslipidemic activity of hot-water extracts from leaves of Cinnamomum osmophloeum Kaneh. Phytother Res 25: 1317-1322. Liu, C., L. Cai, X. Han and T. Ying (2011a) Temporary effect of postharvest UV-C irradiation on gene expression profile in tomato fruit. Gene 486: 56-64. Liu, C., X. Han, L. Cai, X. Lu, T. Ying and Z. Jiang (2011b) Postharvest UV-B irradiation maintains sensory qualities and enhances antioxidant capacity in tomato fruit during storage. Postharvest Biol Tec 59: 232-237. Lois, R. (1994) Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L. Planta 194: 498-503. Manzocco, L., S. Da Pieve, A. Bertolini, I. Bartolomeoli, M. Maifreni, A. Vianello and M. C. Nicoli (2011) Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties. Postharvest Biol Tec 61: 165-171. Markham, K. R., H. Geiger and H. Jaggy (1992) Kaempferol-3-O-glucosyl(l-2) rhamnoside from Ginkgo biloba and a reappraisal of other gluco(l-2, l-3 and l-4)rhamnoside structures. Phytochemistry 31: 1009-1011. Markham, K. R., K. S. Gould, C. S. Winefield, K. A. Mitchell, S. J. Bloor and M. R. Boase (2000) Anthocyanic vacuolar inclusions – their nature and significance in flower colouration. Phytochemistry 55: 327-336. Matsuo, M., N. Sasaki, K. Saga and T. Kaneko (2005) Cytotoxicity of flavonoids toward cultured normal human cells. Biol Pharm Bull 28: 253-259. Meisner, D., A. Albert, C. Bottcher, D. Strack and C. Milkowski (2008) The role of UDP-glucose: hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta 228: 663-674. Ning, W., X. Peng, L. Ma, L. Cui, X. Lu, J. Wang, J. Tian, X. Li, W. Wang and L. Zhang (2012) Enhanced secondary metabolites production and antioxidant activity in postharvest Lonicera japonica Thunb. in response to UV radiation. Innov Food Sci Emerg 13: 231-243. Olsson, L. C., M. Veit, G. Weissenbock and J. F. Bornman (1997) Differential flavonoid response to enhanced UV-B radiation in Brassica napus. Phytochemistry 38: 1021-1028. Pan, S. B., X. Wang, W. J. Duan, Z. Y. Yu, L. Zhang and W. Liu (2014) Preparative isolation and purification of flavonoids from Cuscuta chinensis Lam. by high-speed countercurrent chromatography. J Liq Chromatogr R T 37: 2162-2171. Peer W. A., A. Bandyopadhyay, J. J. Blakeslee, S. N. Makam, R. J. Chen, P. H. Masson and A. S. Murphya (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. The Plant Cell 16: 1898-1911. Peters, N. K. and S. R. Long (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88: 396-400. Raab, T., D. Barron, F. A. Vera, V. Crespy, M. Oliveira and G. Williamson (2010) Catechin glucosides: occurrence, synthesis, and stability. J Agr Food Chem 58: 2138-2149. Redmond, J. W., M. Batley, M. A. Djordjevic, R. W. Innes, P. L. Kuempel and B. G. Rolfe (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323: 632-635. Reed, T. T. (2011) Lipid peroxidation and neurodegenerative disease. Free Radical Bio Med 51: 1302-1319. Rozema, J., J. ven de Staaij, L. O. Bjom and M. Caldwell. (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12: 22-28. Salminen, J. P., M. Lahtinen, K. Lempa, L. Kapari, E. Haukioja and K. Pihlaja (2004) Metabolic modifications of birch leaf phenolics by an herbivorous insect: detoxification of flavonoid aglycones via glycosylation. Z Naturforsch C 59: 437-444. Sato, M., N. Ramarathnam, Y. Suzuki, T. Ohkubo, M. Takeuchi and H. Ochi (1996) Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44: 37-41. Schreiner, M., I. Mewis, S. Huyskens-Keil, M. A. K. Jansen, R. Zrenner, J. B. Winkler, N. OʹBrien and A. Krumbein (2012) UV-B-Induced Secondary Plant Metabolites - Potential Benefits for Plant and Human Health. Crit Revi Plant Sci 31: 229-240. Schreiner, M., A. Krumbein, I. Mewis, C. Ulrichs and S. Huyskens-Keil (2009) Short-term and moderate UV-B radiation effects on secondary plant metabolism in different organs of nasturtium (Tropaeolum majus L.). Innov Food Sci Emerg 10: 93-96 Skadhauge, B., K. K. Thomsen and D. V. Wettstein (1997) The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126: 147-160. de Sousa, E., L. Zanatta, I. Seifriz, T. B. Creczynski-Pasa, M. G. Pizzolatti, B. Szpoganicz and F. R. M. B. Silva (2004) Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(L)-dirhamnoside from Bauhinia forficata leaves. Journal Nat Prod 67: 829-832. Stafford, H. A. (1974) Possible multi-enzyme complexes regulating the formation of C6-C3 phenolic compounds and lignins in higher plants. Rec Adv Phytochem 8: 53-79. Stevenson, D. E., R. Wibisono, D. J. Jensen, R. A. Stanley and J. M. Cooney (2006) Direct acylation of flavonoid glycosides with phenolic acids catalysed by Candida antarctica lipase B (Novozym 435R). Enzyme Microb Tech 39: 1236-1241. Susanti, D., H. M. Sirat, F. Ahmad, R. M. Ali, N. Aimi and M. Kitajima (2007) Antioxidant and cytotoxic flavonoids from the flowers of Melastoma malabathricum L. Food Chem 103: 710-716. Sun, M., X. Gu, H. Fu, L. Zhang, R. Chen, L. Cui, L. Zheng, D. Zhang and J. Tian (2010) Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. I Innov Food Sci Emerg 11: 672-676. Taylor, L. P. and E. Grotewold (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8: 317-323. Tanga, Y., F. Loua, J. Wanga, Y. Lia and S. Zhuang (2001) Coumaroyl flavonol glycosides from the leaves of Ginkgo biloba. Phytochemistry 58: 1251-1256. Trutter, D. (2005) Significance of flavonoids in plant resistanceand enhancement of their biosynthesis. Plant Biology 7: 581-591. Verweij, W., C. Spelt, G. P. Di Sansebastiano, J. Vermeer, L. Reale, F. Ferranti, R. Koes and F. Quattrocchio (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10: 1456-1462. Wang, X. (2009) Structure, mechanism and engineering of plant natural product glycosyltransferases. Febs Lett 583: 3303-3309. Wang, G. J., T. H. Tsai and L. C. Lin (2007) Prenylflavonol, acylated flavonol glycosides and related compounds from Epimedium sagittatum. Phytochemistry 68: 2455-2464. Wang, Y. S., L. P. Gao, Y. Shana, Y. J. Liua, Y. W. Tian and T. Xia (2012) Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci Hortic-Amsterdam 141: 7-16. Wasson, A. P., F. I. Pellerone and U. Mathesius (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. The Plant Cell 18: 1617-1629. Wellmann, E. (1971) Phytochrome-mediated flavone glycoside synthesis in cell suspension cultures of Petroselinum hortense after preirradiation with ultraviolet light. Planta 101: 283-286. Winkel, B. S. J. (2008) The biosynthesis of flavonoids. pp. 59-71. In E. Grotewold ed. The Science of Flavonoids. Springer, New York. 280 pp. Winkel-Shirley, B. (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiology 126: 485-493. Xiao, J., H. Cao, Y. Wang, J. Zhao and X. Wei (2009) Glycosylation of dietary flavonoids decreases the affinities for plasma protein. J Agr Food Chem 57: 6642-6648. Xu, L. and Y. Du (2011) Effects of yeast antagonist in combination with UV-C treatment on postharvest diseases of pear fruit. Biocontrol 57: 451-461. Yang, C. P., G. J. Huang, H. C. Huang, Y. C. Chen, C. I. Chang, S. Y. Wang, H. S. Chang, Y. H. Tseng, S. C. Chien and Y. H. Kuo (2013) The effect of the aerial part of Lindera akoensis on lipopolysaccharides (lps)-induced nitric oxide production in RAW264.7 Cells. Int J Mol Sci 14: 9168-9181. Yin, R., B. Messner, T. Faus-Kessler, T. Hoffmann, W. Schwab, M. R. Hajirezaei, V. von Saint Paul, W. Heller and A. R. Schaffner (2012) Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. J Exp Bot 63: 2465-2478. Zhao, J. and R. A. Dixon (2009) The ʹinsʹ and ʹoutsʹ of flavonoid transport. Trends Plant Sci 15: 72-80. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56329 | - |
dc.description.abstract | 土肉桂(Cinnamomum osmophloeum Kaneh.)為臺灣重要之經濟樹種,其葉子之黃酮類化合物具有抗氧化、抗發炎、人類乳癌腫瘤細胞毒殺及降低血糖等生物活性。本研究以UV-B照射採收後之土肉桂葉子,探討UV-B照射能量、照射持續時間及照射環境溫度等不同條件,對其黃酮類化合物含量之影響,並進一步分析不同照射條件對抽出物抗氧化能力之影響。結果顯示,土肉桂葉子以UV-B照射能量3.68 Wm-2、照射持續時間6 h及照射溫度25℃為最佳處理條件,能使乙醇抽出物中主要10種Kaempferol醣苷之總含量由62.89 ± 2.04 mg/g(94.48 ± 3.14 μmol/g)增加至78.09 ± 2.29 mg/g(116.22 ± 3.51 μmol/g),並且能增加抽出物抑制脂質過氧化之能力,其中含量增加較多者為經過2次醯基化且UV-B吸收能力較強之化合物7 – 10(平均增加5.7倍)。因此,土肉桂受到UV-B照射後,葉子能藉由增加黃酮類化合物來抑制脂質細胞膜損傷,並且藉由醯基化之黃酮類化合物吸收UV-B能量,降低植物受UV-B照射之影響。
此外,本研究亦探討土肉桂葉齡對UV-B照射促進其黃酮類化合物生合成之影響,尋找最適合採收之時期。結果顯示葉子抽芽後8 – 9 w為UV-B照射提升黃酮類化合物含量效率最佳之採收葉齡,照射後每片葉子之乙醇抽出物能得到3.47 ± 0.05 mg of RE及0.70 ± 0.05 mg of QE。綜合不同照射條件之結果,本研究利用多元迴歸模型,以3種UV-B照射變因(照射能量、照射時間及照射溫度)設計出總黃酮類化合物含量增幅之預測模型,供未來土肉桂葉子UV-B處理上,能同時選擇對其適合之條件,亦能達到有效提高黃酮類化合物產量之目的,增加土肉桂葉子的醫療保健及經濟價值,更能提供其他樹種利用之參考。 | zh_TW |
dc.description.abstract | Cinnamomum osmophloeum Kaneh. is an important indigenous tree species in Taiwan. Flavonoids in leaves of C. osmophloeum were proved to have antioxidant activity, anti-inflammatory activity, cytotoxic activity against human breast adenocarcinoma cell, and hypoglycemic effect. In this study, we treated leaf of C. osmophloeum with UV-B irradiation in various conditions about irradiation intensity, irradiation time, and irradiation temperature after harvest, and discussed the changes of flavonoids contents. In addition, the influence of UV-B irradiation on the antioxidant activity of leaf extract was also examined. As a result, UV-B irradiation at 25℃ at an intensity of 3.68 Wm-2 for 6 h was the best post-treatment for mature leaf of C. osmophloeum, which resulted in an increase in the total contents of 10 major flavonoids in ethanolic extract from 62.89 ± 2.04 mg/g (94.48 ± 3.14 μmol/g) to 78.09 ± 2.29 mg/g (116.22 ± 3.51 μmol/g), of which acylated flavonol glycosides 7 – 10 were increased the most average about 5.7-fold. Furthermore, the lipid peroxidation inhibition of leaf extract was also enhanced by UV-B irradiation. Therefore, when C. osmophloeum leaf was irradiated with UV-B, the lipid peroxidation inhibition was enhanced to avoid the damage of cell membrane. At the same time, the contents of acylated flavonol glycosides were increased to absorb the intensity of UV-B irradiation.
In addition, the influence of leaf age of C. osmophloeum on induced flavonoid biosynthesis by UV-B was also discussed to find the best harvest time. The results showed that 8 – 9 w after sprouting was the best harvest time which was the most efficiency to gain the flavonoids by using UV-B as the post-treatment, and each leaf can gain 3.47 ± 0.05 mg of RE and 0.70 ± 0.05 mg of QE after UV-B irradiation. According to the results of different irradiation conditions, we constructed a multiple regression model to calculate the increment of total flavonoid contents from independent variables of three UV-B treatments (intensity, time, and temperature). This model can be used to forecast the increment of total flavonoid contents in leaf of C. osmophloeum with the different conditions of UV-B treatments, and helps to find the more efficient UV-B treatments in different cases to increase flavonoids. This forecast model may supply a well instance for the other tree species in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:23:43Z (GMT). No. of bitstreams: 1 ntu-103-R01625012-1.pdf: 6650301 bytes, checksum: e997b557a4bf6e66a1b9725efc52f2d7 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄 I
表目錄 VI 圖目錄 IX 摘要 XVII Abstract XVIII 壹、前言 1 貳、文獻回顧 3 一、植物黃酮類化合物之簡介 3 (一)植物黃酮類化合物生合成之途徑與調控 3 1. 黃酮類化合物生合成途徑 4 2. 黃酮類化合物在植物中生合成位置、分布與輸送 6 (1) Membrane vesicle-mediated transport假說 7 (2) Membrane transporter-mediated transport假說 7 3. 基因及酵素調控 9 (二)植物黃酮類化合物之生理功能 11 1. 植物荷爾蒙的輸送 11 2. 根系發育與根瘤之形成 11 3. 花粉及花序之發育 12 4. 抵抗環境壓力 12 5. 抵抗植物病原菌與蟲害 13 (三)植物黃酮類化合物醣基化之修飾 14 1. 黃酮類化合物醣基化修飾作用 14 (1) Detoxification 16 (2) Stabilization 16 (3) Solubilization 17 2. 黃酮類醣基化修飾之調控 17 3. 黃酮類化合物醣基化修飾之應用 20 二、UV-B於植物採收後處理之應用 21 (一)植物對UV-B訊號之感應與傳遞 21 (二)UV-B應用於採收後之花卉 23 (三)UV-B應用於採收後之果實 25 (四)UV-B應用於採收後之葉子 25 三、土肉桂簡介 28 (一)土肉桂化學品系 28 (二)土肉桂葉子黃酮類化合物之研究 29 (三)土肉桂黃酮類化合物之生物活性 31 1. 抗氧化 31 2. 抗發炎 31 3. 降低血糖 31 4. 降低血脂 32 5. 腫瘤細胞毒殺 32 參、材料與方法 33 一、試驗材料 33 二、試驗方法 33 (一)UV-B照射試驗 33 1. UV-B照射能量之影響 33 2. UV-B照射時間之影響 34 3. UV-B照射溫度之影響 34 (二)葉子年齡影響之試驗 34 (三)土肉桂葉子抽出物萃取 35 (四)抽出物之酚類化合物含量測定 35 1. 總酚類化合物 35 2. 總黃酮類化合物 35 3. 建立黃酮類化合物含量增幅之預測模型 36 (五)抽出物之抗氧化活性試驗 36 1. DPPH自由基清除 36 2. 還原力 37 3. 抑制脂質過氧化 37 (六)抽出物之分離與純化 38 1. 液相-液相分離 38 2. 高效能液相層析 38 (七)化合物結構鑑定 39 1. 紫外光-可見光光譜分析 39 2. 質譜分析 40 3. 核磁共振分析 40 (八)化合物定量 40 (九)統計分析 41 肆、結果與討論 42 一、UV-B照射條件對土肉桂葉子黃酮類化合物含量之影響 42 (一)照射能量之影響 42 (二)照射時間之影響 44 (三)照射溫度之影響 46 二、土肉桂葉子年齡對UV-B照射促進黃酮類化合物生合成之影響 49 (一)UV-B照射對土肉桂嫩葉與成熟葉黃酮類化合物含量之影響 49 (二)UV-B照射增加土肉桂葉子黃酮類化合物含量之最佳採收葉齡 51 三、UV-B照射後土肉桂葉子抽出物抗氧化活性之變化 58 (一)清除DPPH自由基能力之變化 58 (二)還原力之變化 60 (三)抑制脂質過氧化能力之變化 61 四、UV-B照射條件之預測模型 64 五、UV-B照射後土肉桂葉子黃酮類化合物之分離與鑑定 69 (一)土肉桂葉子乙醇抽出物之層析分離 69 (二)土肉桂葉子乙醇抽出物乙酸乙酯可溶部及正丁醇可溶部化合物之鑑定 74 1. Kaempferol-3-O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-7-O- α-L- rhamnopyranoside (1) 74 2. Kaempferol-3-O-β-D-apiofuranosyl-(1→2)-α-L-arabinofuranosyl-7-O-α- L-rhamnopyranoside (2) 80 3. Kaempferitrin (3) 86 4. Kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinofuranosyl-7- O-α-L-rhamnopyranoside (4) 91 5. Kaempferol-3-O-α-L-rhamnopyranoside (5) 97 6. Kaempferol-3-O-(4ʹʹ-E-p-coumaroyl)-α-L-rhamnopyranoside (6) 102 7. Kaempferol-3-O-(3ʹʹ4ʹʹ-di-E-p-coumaroyl)-α-L-rhamnopyranoside (7) 108 8. Kaempferol-3-O-(2ʹʹ4ʹʹ-di-E-p-coumaroyl)-α-L-rhamnopyranoside (8) 115 9. Kaempferol-3-O-(2ʹʹ-E-p-coumaroyl,4ʹʹ-Z-p-coumaroyl)-α-L-rhamnopyra- noside (9) 122 10. Kaempferol-3-O-(2ʹʹ-Z-p-coumaroyl,4ʹʹ-E-p-coumaroyl)-α-L-rhamnopy- ranoside (10) 129 六、UV-B照射對土肉桂葉子黃酮類化合物變化之探討 136 伍、結論 143 陸、參考文獻 145 | |
dc.language.iso | zh-TW | |
dc.title | UV-B對採收後土肉桂葉子黃酮類化合物含量之影響 | zh_TW |
dc.title | Influence of UV-B Irradiation on Flavonoid Contents in Postharvest Leaf of Cinnamomum osmophloeum Kaneh. | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王升陽(Sheng-Yang Wang),蘇裕昌(Yu-Chang Su),何政坤(Cheng-Kuen Ho),葉汀峰(Ting-Feng Yeh) | |
dc.subject.keyword | 醯基化,生合成,土肉桂,黃酮類化合物,預測模型,葉齡,UV-B, | zh_TW |
dc.subject.keyword | acylation,biosynthesis,Cinnamomum osmophloeum Kaneh.,flavonoid,forecast model,leaf age,ultraviolet-B, | en |
dc.relation.page | 156 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 6.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。