Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56318
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐年盛
dc.contributor.authorChien-Lin Huangen
dc.contributor.author黃建霖zh_TW
dc.date.accessioned2021-06-16T05:23:15Z-
dc.date.available2016-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citationAhmad, S., and S.P. Simonovic, “An Intelligent Decision Support System for Management of Floods,” Water Resources Management, Vol.20, pp.391-410(2006).
Anderson, M., Z. Chen, M. Kavvas, and A. Feldman, ”Coupling HEC-HMS with Atmospheric Models for Prediction of Watershed Runoff,” Journal of Hydrologic Engineering, Vol.7, Issue 4, pp.312-318 (2002).
Aqil, M., I. Kita, A. Yano, and S. Nishiyama, “Neural Networks for Real Time Catchment Flow Modeling and Prediction,” Water Resources Management, Vol.21, Issue 10, pp.1781-1796 (2007).
Bagis, A., and D. Karaboga, “Artificial neural networks and fuzzy logic based control of spillway gates of dams,” Hydrological Processes, Vol.18, pp.2485-2501(2004).
Bazarra, M., H. Sherali, and C. Shetty, “Nonlinear programming: Theory and algorithms,” Wiley, New York(1993).
Bertoni, J.C., C.E. Tucci, and R.T. Clarke, “Rainfall-based real-time flood forecasting,” Journal of Hydrology, Vol.131, Issues 1-4, pp.313-339(1992).
Bolzern, P., M. Ferrario, and G. Fronza, “Adaptive real-time forecast of river flow-rates from rainfall data,” Journal of Hydrology, Vol.47, Issues 3-4, pp.251-267 (1980).
Bretscher, O., “Linear Algebra With Applications,” 3rd ed., Upper Saddle River NJ: Prentice Hall(1995).
Brath, A., A. Montanari, and E. Toth, “Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models,” Hydrology and Earth System Sciences, Vol.6, Number 4, pp.627-639(2002).
Chang, L.C., “Guiding rational reservoir flood operation using penalty-type genetic algorithm,” Journal of Hydrology, Vol.354, pp.65-74(2008).
Chang, F.J., and L. Chen, “Real-coded Genetic Algorithm for Rule-based Flood Control Reservoir Management,” Water Resources Research, Vol.12, pp.185-198(1998).
Chang, H.H., L.L. Harrison, W. Lee, and S. Tu, “Numerical modeling for sediment-pass-through reservoirs,” Journal of Hydraulic Engineering, Vol.122, No.7, pp.381-388(1996).
Chang, F.J., L.C. Chang, and H.L. Huang, 'Real-time recurrent learning neural network for stream-flow forecasting,' Hydrological Processes, Vol.16, pp.2577-2588(2002).
Chang, L.C., F.J. Chang, and H.C. Hsu, 'Real-time reservoir operation for flood control using artificial intelligent techniques,' Int. J. Nonlinear Sci. Numer. Simul., Vol.11, pp.887–902(2010).
Chang, F.J., and Y.C. Chen, “A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction,” Journal of Hydrology, Vol.245, Issues 1-4, pp.153-164(2001).
Chang, F.J., L.C. Chang, and H.L. Huang, “Real-time recurrent learning neural network for stream-flow forecasting,” Hydrological Processes, Vol.16, pp.2577-2588(2002).
Chang, F.J., and Y.Y. Hwang, “A self-organization algorithm for real-time flood forecast,” Hydrological Processes, Vol.13, Issue 2, pp.123–138(1999).
Chiang, Y.M., L.C. Chang, and F.J. Chang, “Comparison of static-feedforward and dynamic-feedback neural networks for rainfall artificial neural networks for rainfall–runoff modeling,” Journal of Hydrology, Vol.290, Issues 3-4, pp.297-311(2004).
Chiu, S.L., “Fuzzy Model Identification Based On cluster Estimation,” Journal of Intelligent and Fuzzy Systems, Vol.2, No. 3, pp. 267-278 (1994).
Chou, F.N.F., and C.W. Wu, ”Reducing the impacts of flood-induced reservoir turbidity on a regional water supply system,” Advances in Water Resources, Vol.33, pp.146–157(2010).
Collischonn, W., R. Haas, I. Andreolli, and C.E.M. Tucci, “Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model,” Journal of Hydrology, Vol.305, Issues 1–4, pp.87–98(2005).
Coulibaly, P., F. Anctil, and B. Bob´ee, “Daily reservoir inflow forecasting using artificial neural networks with stopped training approach,” Journal of Hydrology, Vol.230, Issues 3–4, pp.244–257(2000).
Coulibaly, P., and C.K. Baldwin, “Nonstationary hydrological time series forecasting using nonlinear dynamic methods,” Journal of Hydrology, Vol.307, Issues 1-4, pp.164–174(2005).
Dawson, C.W., and R. Wilby, “An artificial neural network approach to rainfall-runoff modelling,” Hydrological Sciences Journal, Vol.43, Number 1, pp.47-66(1998).
Druce, D.J., “Incorporating daily flood control objectives into a monthly stochastic dynamic programming model for a hydroelectric complex,” Water Resource Research, Vol.26, No.1, pp.5-11(1990).
Elman, J.L., 'Finding structure in time,' Cognitive Science, Vol.14, pp.179–211(1990).
El-Shafie, A., M.R. Taha, and A. Noureldin, “A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam,” Water Resources Management, Vol.21, Number 3, pp.533-556(2007).
Guo, W.D., J.S. Lai, G.F. Lin, F.Z. Lee, and Y.C. Tan, ”Finite-volume multi-stage scheme for advection-diffusion modeling in shallow water flows,” Journal of Mechanics, Vol.27, No.3, pp.1-16(2011).
Grygier, J., and J. Stedinger, “Algorithms for optimizing hydropower system operation,” Water Resource Research, Vol.21, No.1, pp.1–10(1985).
Haykin S., Neural Networks: a Comprehensive Foundation, 2nd ed. Prentice Hall: Upper Saddle River, N.J. (1999)
Hsu, N.S., and K.W. Cheng, “Network flow optimization model for basin scale water supply planning,” Journal of Water Resources Planning Management, ASCE, Vol.128, No.2, pp.102-112(2002).
Hsu, N.S., C.L. Huang, and C.C. Wei, 'Multi-phase intelligent decision model for reservoir real-time flood control during typhoons,' Journal of Hydrology (Under Review)
Hsu, N.S., and C.C. Wei, ”A multipurpose reservoir real-time operation model for flood control during typhoon invasion,” Journal of Hydrology, Vol.336, pp.282-293(2007).
Hejazi, M.I., and X.M. Cai, “Building more realistic reservoir optimization models using data mining-A case study of Shelbyville Reservoir,” Advances in Water Resources, Vol.34, pp.701-717(2011).
Huang, W.C., and C.L. Hsieh, “Real-time reservoir flood operation during typhoon attacks,” Water Resources Research, Vol.46, W07528(2010).
Hsu, N.S., and C.C. Wei, ”A multipurpose reservoir real-time operation model for flood control during typhoon invasion,” Journal of Hydrology, Vol.336, pp.282– 293(2007).
Hsu, N.S., C.L. Huang, C.C. Wei, 2014, ' Multi-phase intelligent decision model for reservoir real-time flood control during typhoons,' Journal of Hydrology (Under Re-reviewing) (SCI)
Jang, J.S.R., ”ANFIS: Adaptive Network-based Fuzzy Inference System,” IEEE Transactions on Systems, Man, and Cybernetics, Vol.23, Issue 3, pp.665-685(1993).
Jang, J.S.R., C.T. Sun, and E. Mizutani, “Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence,” Matlab Curriculum Series, Prentice-Hall International Inc.: Upper Saddle River, N.J. (1997)
Jeng, B.F., H.J. Chen, S.C. Lin, T.M. Leou, M.S. Peng, S.W. Chang, W.R. Hsu, and C.P. Chang, “The limited-area forecast systems at the Central Weather Bureau in Taiwan,” Weather and Forecasting, Vol.6, Issue 1, pp. 155-180(1991).
Kitanidis, P.K., and R.L. Bras, “Real-time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty,” Water Resources Research, Vol.16, No. 6, pp.1025–1033(1980).
Komma, J., G. Blöschl, and C. Reszler, “Soil moisture updating by Ensemble Kalman Filtering in real-time flood forecasting,” Journal of Hydrology, Vol.357, Issues 3, pp.228.357(2008).
Kumar, D.N., F. Baliarsingh, and K.S. Raju, “Optimal Reservoir Operation for Flood Control Using Folded Dynamic Programming,” Water Resources Management, Vol.24, pp.1045-1064(2010).
Labadie, J.W., “Optimal operation of multireservoir systems: state-of-the-art review,” Journal of Water Resources Planning and Management, Vol.130, No.2, pp.93–111(2004).
Lardet, P., and C. Obled, “Real-time flood forecasting using a stochastic rainfall generator,” Journal of Hydrology, Vol.162, Issues 3-4, pp.391-408(1994).
Lee, C.S., L.R. Huang, H.S. Shen, and S.T. Wang, 'A Climatology Model for Forecasting Typhoon Rainfall in Taiwan,' Natural Hazards, Vol.37, pp.87-105 (2006).
Li, X., S.L. Guo, P. Liu, and G.Y. Chen, “Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty,” Journal of Hydrology, Vol.391, pp.124-132(2010).
Liu, X.Y., S.L. Guo, P. Liu, L. Chen, and X. Li, “Deriving Optimal Refill Rules for Multi-Purpose Reservoir Operation,” Water Resources Management, Vol.25, pp.431-448(2011).
Liu, Y. B., S. Gebremeskel, F. De Smedt, L. Hoffman, and L. Pfister, 'A diffusive approach for flow routing in GIS based flood modeling,' Journal of Hydrology, Vol.283, pp.91–106(2003).
Loaiciga, H.A., and M.A. Marino, “An Approach to Parameter Estimation and Stochastic Control in Water Resources with an Application to Reservoir Operation,” Water Resource Research, Vol.21, No.11, pp.1575-1584(1985).
Li, Y.H., J.Z. Zhou, Y.C. Zhang, H. Qin, and L. Liu, “Novel Multiobjective Shuffled Frog Leaping Algorithm with Application to Reservoir Flood Control Operation,” Journal of Water Resources Planning and Management, Vol.136, Issue2, pp.217-226.(2010).
Lin, G.F., G.R. Chen, P.Y. Huang, and Y.C. Chou, 'Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods,' Journal of Hydrology, Vol.372, pp.17–29(2009a).
Lin, G.F., M.C. Wu, G.R. Chen, and F.Y. Tsai, 'An RBF-based model with an information processor for forecasting hourly reservoir inflow during typhoons,' Hydrological Processes, Vol.23, pp.3598-3609(2009b).
Liou, C.S., J.H. Chen, C.T. Terng, F.J. Wang, C.T. Fong, T.E. Rosmond, H.C. Kuo, C.H. Shiao, and M.D. Cheng, “The Second–Generation Global Forecast System at the Central Weather Bureau in Taiwan,” Weather and Forecasting, Vol.12, Issue 3, pp.653-663(1997).
Michaud, J., and S. Sorooshian, “Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed,” Water Resources Research, Vol.30, No. 3, pp.593–605(1994).
Molnar, P., and J. A. Ramirez, 'Energy dissipation theories and optimal channel characteristics of river networks,' Water Resources Research, Vol.34, No.7, pp.1809–1818(1998).
Nayak, P.C., K.P. Sudheer, and K.S. Ramasastri, “Fuzzy computing based rainfall–runoff model for real time flood forecasting,” Hydrological Processes, Vol.19, pp.955-968(2005).
Needham, J.T., W.W. David Jr., and R.L. Jay, “Linear programming for flood control in the Iowa and Des Moines rivers,” Journal of Water Resources Planning and Management, Vol.126, No.3, pp.118-127(2000).
Niewiadomska-Szynkiewicz, E., M. Malinowski, and A. Karbowski, “Predictive methods for real-time control of flood operation of a multireservoir system: methodology and comparative study,” Water Resource Research, Vol.32, No.9, pp.2885-2895(1996).
Ngo, L.L., H. Madsen, and D. Rosbjerg, “Simulation and optimisation modelling approach for operation of the Hoa Binh reservoir, Vietnam,” Journal of Hydrology, Vol.336, pp.269-281(2007).
Pan, T.Y., and R.Y. Wang, 'State space neural networks for short term rainfall-runoff forecasting,' Journal of Hydrology, Vol.297, Issue 1–4, pp.34–50(2004).
Pappenberger, F., K.J. Beven, N.M. Hunter, P.D. Bates, B.T. Gouweleeuw, J. Thielen, and A.P.J. De Roo, “Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS),” Hydrology and Earth System Sciences, Vol.9, Number 4, pp.381-393(2005).
Peng, M.S., Jeng, B.F., and Chang, C.P., “Forecast of typhoon motion in the vicinity of Taiwan during 1989–1990 using a dynamic model,” Weather and Forecasting, Vol.8, Issue 3, pp.309-325(1993).
Rosenblatt, F., ”The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,” Psych, Rev. 65, pp.386-408(1958).
Rumelhart, D. E., and J.L. McClelland, ”Parallel Distributed Processing: Explorations in the Microstructure of Cognition,” Vol. 1, MIT Press, Cambridge, M.A.(1986).
Ryu, I.G., S.W. Chung, and S.W. Yoon, “Modelling a turbidity current in Soyang reservoir (Korea) and its control using a selective withdrawal facility,” Water Science & Technology, Vol.63, Issue 9, pp.1864-1872(2011).
Shim, K.C., D.G. Fontane, and J.W. Labadie, “Spatial Decision Support System for Integrated River Basin Flood Control,” Journal of Water Resources Planning and Management, Vol.128, No.3, pp.190-201(2002).
Solomatine, D.P., and K.N. Dulal, “Model trees as an alternative to neural networks in rainfall-runoff modeling,” Hydrological Sciences Journal, Vol.48, No. 3, pp.399-411(2003).
Spearman, C., 'The proof and measurement of association between two things,' Amer. J. Psychol., Vol.15, pp.72–101(1904).
Takagi, T., and M. Sugeno, 'Derivation of fuzzy control rules from human operator’s control actions,' Proc. of the IFAC Conf. on Fuzzy Information, Vol.1, Marseille, France, pp.55-60(1983).
Thirumalaiah, K., and M. Deo, ”Hydrological Forecasting Using Neural Networks,” Journal of Hydrologic Engineering, Vol.5, No. 2, pp.180-189(2000).
Toth, E., A. Brath, and A. Montanari, “Comparison of short-term rainfall prediction models for real-time flood forecasting,” Journal of Hydrology, Vol.239, Issues 1-4, pp.132–147(2000).
Unver, O.I., and L.W. Mays, “Model for real-time optimal flood control operation of a reservoir system,” Water Resources Management, Vol.4, pp.21-46(1990).
U.S. Army Corps of Engineers, ”HEC-RAS Hydraulic Reference Manual Version 4.0,”(2008).
Valeriano, O.C.S., T. Koike, K. Yang, and D.W. Yang, “Optimal Dam Operation during Flood Season Using a Distributed Hydrological Model and a Heuristic Algorithm,” Journal of Hydrologic Engineering, Vol.15, No.7, pp.580-586(2010).
Windsor, J.S., “Optimization model for the operation of flood control systems,” Water Resources Research, Vol.9, No.5, pp.1219-1226(1973).
Wurbs, R.A., “Reservoir-system simulation and optimization models,” Journal of Water Resources Planning and Management, Vol.119, No.4, pp.455–472(1993).
Wu, J., J. Han, S. Annambhotla, and S. Bryant, ”Artificial Neural Networks for Forecasting Watershed Runoff and Stream Flows,” Journal of Hydrologic Engineering, Vol.10, No. 3, pp.216-222(2005).
Wang, Y.M., J.X. Chang, and Q. Huang, “Simulation with RBF Neural Network Model for Reservoir Operation Rules,” Water Resources Management, Vol.24, pp.2597-2610(2010).
Wei, C.C., and N.S. Hsu, ”Optimal tree-based release rules for real-time flood control operations on a multipurpose multi-reservoir system,” Journal of Hydrology, Vol.365, pp.213–224(2009).
Wei, C.C., and N.S. Hsu, ”Multi-reservoir real-time operations for flood control using balanced water level index method,” Journal of Environmental Management, Vol.88, pp.1624–1639(2008).
Wasimi, S.A., and P.K. Kitanidis, “Real-time forecasting and daily operation of a multireservoir system during floods by linear quadratic Gaussian control,” Water Resource Research, Vol.19, No.6, pp.1511-1522(1983).
Wang, S.T., 'Track, intensity, structure, wind and precipitation characteristics of typhoons affecting Taiwan,' Disaster Mitigation Res. Rep. 80-73, NSC 80-04140-P052-02B, 285 pp., Natl. Sci. Counc. of Taiwan, Taipei (1989).
Wang, G.Q., and Z.X. Xu, “Assessment on the function of reservoirs for flood control during typhoon seasons based on a distributed hydrological model,” Hydrological Processes, Vol.25, pp.2506-2517(2011).
Wang, Y.C., J. Yoshitani, and K. Fukami, “Stochastic multiobjective optimization of reservoirs in parallel,” Hydrological Processes, Vol.19, pp.3551–3567(2005).
Wang, X.J., R.H. Zhao, and Y.W. Hao, “Flood Control Operations Based on the Theory of Variable Fuzzy Sets,” Water Resources Management, Vol.25, pp.777-792(2011).
Xu, Z.X., and J.Y. Li, “Short-term inflow forecasting using an artificial neural network model,” Hydrological Processes, Vol.16, pp.2423-2439(2002).
Yang, D.W., T. Koike and H. Tanizawa, “Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan,” Hydrological Processes, Vol.18, pp.3119-3132(2004).
Yeh, W. W-G., “Reservoir management and operation models: A state-of-the-art review,” Water Resource Research, Vol.21, No.12, pp.1797–1818(1985).
Yu, Y.B., B.D. Wang, G.L. Wang, and W. Li, “Multi-person Multi-objective Fuzzy Decision-making Model for Reservoir Flood Control Operation,” Water Resources Management, Vol.18, pp.111-124(2004).
王時鼎、陳泰然、謝信良,「台灣颱風降雨特性及其預報研究(一)」,行政院國家科學委員會防災科技研究報告,No. 72-13,台北(1983)。
王時鼎,「進入東中國海颱風台灣北部地形強迫作用所造成豪雨之初步分析與預報」,交通部中央氣象局委託計畫,台北(1986)。
王如意、許銘熙、蘇明道、鄭克聲、李光敦、簡振和,「台北防洪整體檢討計畫(三)」,經濟部水資源局委託計畫,台北(1998)。
北區水資源局,「石門水庫運用要點」,經授水字第09120205080號令頒,桃園(2002)。
李天浩,「機率式洪水預報系統之研發(1/2)」,經濟部水利署計畫報告,台北(2010)。
周乃昉、楊豐榮、鄭子璉、鄭志偉,「曾文水庫即時防洪運轉分析模式之研擬」,第二屆環境系統分析研討會,臺南(1999)。
周乃昉,「翡翠水庫洪水調節運轉作業檢討(二)」,台北翡翠水庫管理局計畫報告,台北(2003)。
林桂宏,「探討石門集水區降雨-逕流機制與類神經網路洪水預報模式」,碩士論文,國立台灣大學生物環境系統工程學研究所,台北(2012)。
黃建霖、徐年盛,「颱風期間兩階段智慧型水庫防洪最佳即時操作模式之研發」,臺灣水利,第62卷,第2期,第7-25頁 (2014)。
陳昶憲,「水庫防洪即時優選操作之研究」,博士論文,國立台灣大學土木工程研究所,臺北(1991)。
陳莉、蔡宗志、江柏寬,「以模糊理論結合遺傳演算法應用於水庫防洪操作之最佳化研究」,農業工程學報,第48卷,第1期,第82-94頁 (2002)。
張家銓,「改良式自組織映射線性輸出模式於水庫入流量預報之研究」,碩士論文,國立台灣大學土木工程學研究所,台北(2009)。
張雅婷,「調適性網路模糊推論系統於水庫操作之研究」,博士論文,臺灣大學生物環境系統工程學研究所,台北(2006)。
許弘政,「模糊控制模式於颱洪時期水庫即時操作之研究」,碩士論文,淡江大學水資源及環境工程研究所,台北(2007)。
許弘政、張麗秋,「模糊控制模式於颱洪時期水庫即時操作之研究」,台灣水利,第五十七卷,第四期,第87-101頁(2009)。
葉天降、滕春慈、黃麗玫、馮欽賜、張庭槐,「中央氣象局數值天氣預報作業系統(一)歷史演進」,氣象學報,第48卷,第4期,第53-68頁(2012)。
葉天降、馮欽賜、柳再明、陳得松、黃康寧、陳雯美、汪鳳如、洪景山,「中央氣象局數值天氣預報作業系統(二)預報模式概況」,氣象學報,第48卷,第4期,第69-95頁(2012)。
鄭家豪,「改良式倒傳遞類神經網路於水庫入流量預報之研究」,碩士論文,國立台灣大學土木工程學研究所,台北(2008)。
蕭閔鍾,「類神經網路應用於颱風時期集水區流量預測之研究」,碩士論文,淡江大學水資源及環境工程學研究所,台北(2012)。
謝信良、王時鼎、鄭明典、葉天降,「百年(1897∼1996)侵襲台灣颱風之統計分析」,中央氣象局侵台颱風資料庫,http://photino.cwb.gov.tw/tyweb/mainpage.htm (2000)。
顏清連、劉家富,「淡水河系洪水演算模式(五) :水庫操作對洪流之影響」,國家科學委員會防災科技研究報告,台北(1987)。
蘇金鳳、曾慧雯、呂淑靜,「石門心.水庫情-桃園缺水事件之省思-濁度飆高 淨水場難處理」,自由時報電子報專題報導,9月29日(2004)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56318-
dc.description.abstract本研究目的為研發水庫多層放水系統聯合操作決策模式,以決定颱風期間考量下游取水濁度限制、水庫防洪與防淤條件下之最佳即時放水量。本研究可分為決策模式建構與即時操作模擬兩大部分,決策模式建構由模擬分析法與操作歷線優選所組成;模擬分析之目的為應用流體動力泥砂濃度模擬模式(USEPA WASP-based)配合本研究所設計理想放水操作型式之萃取方法,以搜尋出優選時之最佳初始解,並可做為建構嵌入優選模式中之泥砂濃度模擬替代模式(ANFIS-based 與RTRLNN-based)之用;本研究優選模式採用禁忌演算法求解,優選所得到之最佳操作歷線將做為建構決策模式之用。短時距與總入庫流量預報模式(ANFIS-based與RTRLNN-based)、總雨量預報模式為即時操作決策模式所包含之預報模式,上述預報資訊輸入決策模式後,配合氣象局所預報未來颱風移動路徑來判斷目前至各防洪階段之延時,以進行水庫多層放水之即時推估,最後模擬操作成效以評判操作模式之優劣。
本研究將所發展之方法應用於石門水庫後可獲致下列結果:(1)本研究所研發總入庫流量預報模式在輸入項擁有未來總降雨量與颱洪延時兩關鍵性輸入項,並配合其餘因子之綜合模擬下,RTRLNN可相對於ANFIS預報得到較佳準確性與穩定性之總入庫流量;(2) ANFIS對於誤差容忍與調適的能力較高,可優於RTRLNN地模擬出泥砂傳輸之機制與特性;(3) RTRLNN由於擁有即時回饋式的定率演算機制,其對於少樣本的資訊與機制推衍能力較強,因此RTRLNN在多層放水操作推估之成效較ANFIS為佳;(4)本研究耦合所研發之預報模式於智慧型操作決策模式中以進行鳳凰颱風與莫拉克颱風時石門水庫之即時操作測試,輸入項包括短時距及總入庫流量預報資訊、目前蓄水量至最大蓄水量及目標滿水量之差值、目前時刻至各防洪階段之洪水延時、即時觀測到之降雨量、入庫流量、水庫各層放水口及下游鳶山堰之泥砂濃度、下游河道三鶯橋水位、上時刻水庫各層之放水量,輸出項則為水庫各層之即時放水量,結果顯示:應用本研發模式操作下,整場颱洪事件之評比指標:鳶山堰最高泥砂濃度、排砂比、三鶯橋最高水位以及水庫最終蓄水位皆較歷史操作為佳。
zh_TW
dc.description.abstractThis study develops two multi-layer reservoir conjunctive release operation models (RTRLNN-based FSC model and ANFIS-based FSC model) to determine the optimal real-time releases during typhoon invasions for the Shihmen Reservoir basin in Taiwan, taking into consideration turbidity constraints, flood control, and sedimentation control. The study can be divided into model construction and real-time operational simulation. The models consist of a forecast model component, an optimization model component, and an operational decision model component. The decision model is composed of the developed simulation-analysis approach and optimization of the operation hydrograph. The purpose of the simulation-analysis approach is to apply the US EPA WASP-based fluid dynamic sediment concentration simulation model with the developed extracting method of ideal releasing practice to search for the initial solution of optimization and construct the sediment concentration simulation models (ANFIS-based and RTRLNN-based) embedded in the optimization model. The optimization model is solved by tabu search and the optimized releasing operation hydrograph is used for the construction of the decision model. The developed short lead-time and total reservoir inflow forecast models (ANFIS-based and RTRLNN-based) and the real-time revised quantitative precipitation forecast model based on typhoon central location (RTR-TCL-QPF) are embedded in the operational decision model. The forecasted typhoon track information and the duration between the current time and each flood control stage from the Taiwan Central Weather Bureau (CWB) are entered into the operation model for release decision-making. Finally, this study assesses the quality of the decision model according to the outcome of real-time operation.
After applying the operational decision model on the Shihmen Reservoir basin, the results can be concluded as follows: (1) Under the synthesized simulation using key input of future total precipitation and flooding duration with other hydrometeorological factors, the accuracy and stability of the RTRLNN-based total reservoir inflow forecast model is better than the ANFIS-based model; (2) Error toleration and adaption are superior in ANFIS, therefore, the ANFIS-based sediment concentration model better simulates the mechanisms and characteristics of sediment transport than RTRLNN; (3) RTRLNN owns a real-time recurrent deterministic routing mechanism, allowing for better simulation under fewer data samples. Hence, the multi-layer release operation outcome evaluated by RTRLNN-based FSC model is better than ANFIS-FSC model; (4) This study couples the developed forecast model into the decision model to proceed with real-time operation of the Shihmen reservoir during Typhoon Fung-Huang and Typhoon Morakot. The inputs of the decision model include short lead-time, total reservoir inflow, the difference between current storage and maximum storage, the difference between current storage and target full storage, flooding duration between current time and each flood control stage, and real-time observed precipitation, reservoir inflow, sediment concentration of each releasing outlet and Yuan-Shan weir, downstream channel water level at Shan-Yin bridge, and multi-layer reservoir release. The model outputs are real-time evaluated multi-layer reservoir release. Results show that the operational outcome of the developed decision model is better than the historical operation according to the four assessment index: maximum sediment concentration of Yuan-Shan weir, sediment removed ratio, highest water level at Shan-Yin Bridge, and final stored reservoir water level.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:23:15Z (GMT). No. of bitstreams: 1
ntu-103-D98521008-1.pdf: 8331200 bytes, checksum: 146d74da6d3865c66461f21fe49f5a13 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
圖目錄 3
表目錄 5
博士學位論文口試委員會審定書 6
摘要 7
ABSTRACT 9
第一章 前言 12
1.1. 研究緣起與動機 12
1.2. 文獻回顧 13
1.2.1. 水庫降雨-入流量預報 13
1.2.2. 水庫防洪操作 15
1.2.3. 水庫泥砂相關研究 21
1.2.4. 水庫實務操作相關研究 22
1.3. 研究目的 23
第二章 方法建立 24
2.1. 研究流程 24
2.2. 雨量預報模式之建立 27
2.2.1. 颱風中心位置對於水庫集水區降雨量之分區圖 28
2.2.2. 即時修正式颱風中心空間位置平均雨量法(RTR-TCL-QPF) 30
2.3. 短時距類神經網路入庫流量預報模式之建立 31
2.3.1. 模式輸入項之選取 33
2.3.2. 模式評比指標 34
2.4. 總水庫入流量預報模式 34
2.5. 多層水庫防洪與防淤放水操作歷線優選模式 36
2.5.1. 目標函數 37
2.5.2. 限制式 40
2.6. 泥砂濃度之模擬 44
2.6.1. WASP 45
2.6.2. BPNN與ANFIS-based水庫與下游河道泥砂濃度模擬替代模式之架構 54
2.7. 水庫防洪與防淤之模擬分析法 56
2.8. 優選模式之求解 58
2.8.1. 禁忌演算法 59
2.8.2. 應用禁忌演算法優選水庫各放水口之最佳操作序列 60
2.9. 改良式單階段智慧型水庫多層放水口即時防洪與防淤操作決策模式 61
2.9.1. 防洪三階段之區分 61
2.9.2. 模式輸入項之選取 63
2.9.3. 推估模式優劣之評比指標 64
2.9.4. 調適性網路模糊推論系統(ANFIS) 64
2.9.5. 即時回饋式類神經網路(RTRLNN) 69
2.10. 操作結果比較變數 74
第三章 方法應用 75
3.1. 研究區域概述 75
3.2. 模式建構事件 80
3.3. 結果與討論 81
3.3.1. 雨量預報模式之建構結果 81
3.3.2. 短時距入庫流量預報模式之建構結果 85
3.3.3. 總入庫流量預報模式之建構結果 95
3.3.4. WASP泥砂濃度模擬模式之建構結果 98
3.3.5. 水庫防洪與防淤操作模擬分析結果 109
3.3.6. ANFIS-based與RTRLNN-based泥砂濃度模擬替代模式 120
3.3.7. 水庫防洪與防淤操作之優選結果 135
3.3.8. 水庫防洪與防淤多層聯合放水操作推估模式之建構結果 142
3.3.9. 水庫防洪與防淤即時操作模擬測試結果 146
第四章 結論與建議 154
4.1. 結論 154
4.2. 建議 156
參考文獻 158
dc.language.isozh-TW
dc.subject水庫防洪與防淤zh_TW
dc.subject即時操作zh_TW
dc.subject取水濁度zh_TW
dc.subject模擬-優選zh_TW
dc.subject調適性網路模糊推論系統zh_TW
dc.subject即時回饋類神經網路zh_TW
dc.subjectReal-time Recurrent Learning Neural Networken
dc.subjectflood control and sedimentation control of a reservoiren
dc.subjectreal-time operationen
dc.subjectturbidityen
dc.subjectsimulation-optimizationen
dc.subjectAdaptive Network-based Fuzzy Inference Systemen
dc.title颱風期間考慮取水濁度限制下水庫防洪與防淤之最佳即時操作zh_TW
dc.titleReal-time Reservoir Optimal Operation for Flood and Sedimentation Control Considering Turbidity Constraints during Typhoon Invasionen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee葉文工,王如意,游景雲,魏志強,賴進松
dc.subject.keyword水庫防洪與防淤,即時操作,取水濁度,模擬-優選,調適性網路模糊推論系統,即時回饋類神經網路,zh_TW
dc.subject.keywordflood control and sedimentation control of a reservoir,real-time operation,turbidity,simulation-optimization,Adaptive Network-based Fuzzy Inference System,Real-time Recurrent Learning Neural Network,en
dc.relation.page170
dc.rights.note有償授權
dc.date.accepted2014-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
8.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved