Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor毛明華(Ming-Hua Mao)
dc.contributor.authorCheng-Hao Chuen
dc.contributor.author朱承澔zh_TW
dc.date.accessioned2021-06-16T05:22:42Z-
dc.date.available2019-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citation1. G. P. Agrawal, Fiber-optic communication systems (Wiley, 2002).
2. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
3. A. Cho, and J. Arthur, 'Molecular beam epitaxy,' Progress in Solid State Chemistry 10, 157-191 (1975).
4. J. P. Duchemin, M. Bonnet, F. Koelsch, and D. Huyghe, 'A New Method for Growing GaAs Epilayers by Low Pressure Organometallics,' Journal of The Electrochemical Society 126, 1134-1142 (1979).
5. H. M. Manasevit, and W. I. Simpson, 'The Use of Metal‐Organics in the Preparation of Semiconductor Materials: I . Epitaxial Gallium‐ V Compounds,' Journal of The Electrochemical Society 116, 1725-1732 (1969).
6. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).
7. O. Qasaimeh, K. Kamath, P. Bhattacharya, and J. Phillips, 'Linear and quadratic electro-optic coefficients of self-organized In0.4Ga0.6As/GaAs quantum dots,' Applied Physics Letters 72, 1275-1277 (1998).
8. I. B. Akca, A. Dana, A. Aydinli, M. Rossetti, L. Li, A. Fiore, and N. Dagli, 'Electro-optic and electro-absorption characterization of InAs quantum dot waveguides,' Optics Express 16, 3439-3444 (2008).
9. S. Ghosh, A. Lenihan, M. Dutt, O. Qasaimeh, D. Steel, and P. Bhattacharya, 'Nonlinear optical and electro-optic properties of InAs/GaAs self-organized quantum dots,' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19, 1455-1458 (2001).
10. S. H. Shah, Study of Nonlinear Optical Properties of Indium Arsenide/gallium Arsenide and Indium Gallium Arsenide/gallium Arsenide Self-assembled Quantum Dots (University of Delaware, 2007).
11. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, 'On-chip optical interconnect roadmap: challenges and critical directions,' IEEE Journal of Selected Topics in Quantum Electronics 12, 1699-1705 (2006).
12. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, 'Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,' Optics Express 15, 17106-17113 (2007).
13. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, 'High speed silicon Mach-Zehnder modulator,' Optics Express 13, 3129-3135 (2005).
14. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, 'A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,' Nature 427, 615-618 (2004).
15. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, 'Micrometre-scale silicon electro-optic modulator,' Nature 435, 325-327 (2005).
16. J. Hofrichter, O. Raz, A. La Porta, T. Morf, P. Mechet, G. Morthier, T. De Vries, H. J. Dorren, and B. J. Offrein, 'A low–power high–speed InP microdisk modulator heterogeneously integrated on a SOI waveguide,' Optics express 20, 9363-9370 (2012).
17. L. Liu, J. Van Campenhout, G. Roelkens, R. A. Soref, D. Van Thourhout, P. Rojo-Romeo, P. Regreny, C. Seassal, J.-M. Fedeli, and R. Baets, 'Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated III-V microdisk cavity,' Optics Letters 33, 2518-2520 (2008).
18. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, 'Vertical junction silicon microdisk modulators and switches,' Optics Express 19, 21989-22003 (2011).
19. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, 'Carrier-induced change in refractive index of InP, GaAs and InGaAsP,' IEEE Journal of Quantum Electronics 26, 113-122 (1990).
20. R. A. Soref, and B. R. Bennett, 'Electrooptical effects in silicon,' IEEE Journal of Quantum Electronics 23, 123-129 (1987).
21. E. U. Rafailov, The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics (Wiley, 2014).
22. O. Qasaimeh, K. Kamath, P. Bhattacharya, and J. Phillips, 'Linear and quadratic electro-optic coefficients of self-organized In0.4Ga0.6As/GaAs quantum dots,' Applied Physics Letters 72, 1275-1277 (1998).
23. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, Incorporated, 2007).
24. J. Faist, and F. K. Reinhart, 'Phase modulation in GaAs/AlGaAs double heterostructures. I. Theory,' Journal of Applied Physics 67, 6998-7005 (1990).
25. Y. T. Byun, S. J. Kim, S. H. Kim, and J. C. Yl, 'Linear Electro-Optic Coefficient of a GaAs/Al0.4Ga0.6As Phase Modulator,' Journal- Korean Physical Society 45, 3 (2004).
26. K. J. Vahala, 'Optical microcavities,' Nature 424, 839-846 (2003).
27. J. P. Reithmaier, G. Sęk, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, 'Strong coupling in a single quantum dot–semiconductor microcavity system,' Nature 432, 197-200 (2004).
28. M.-H. Mao, H.-C. Chien, J.-Z. Hong, and C.-Y. Cheng, 'Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission,' Optics Express 19, 14145-14151 (2011).
29. N. Frateschi, and A. Levi, 'The spectrum of microdisk lasers,' Journal of Applied Physics 80, 644-653 (1996).
30. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
31. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).
32. A. Yariv, 'Universal relations for coupling of optical power between microresonators and dielectric waveguides,' Electronics Letters 36, 321-322 (2000).
33. M.-H. Mao, H. C. Chien, Y. Li, C. Y. Chneg, and C. H. Chu, 'Quantum-dot microdisk lasers: device structures and performance,' in 2013 EMN fall Meeting(Orlando, Dec. 2013. (invited)).
34. A. G. Baca, and C. I. H. Ashby, Fabrication of GaAs Devices (Institution of Engineering and Technology, 2005).
35. J. Faist, and F. K. Reinhart, 'Phase modulation in GaAs/AlGaAs double heterostructures. II. Experiment,' Journal of Applied Physics 67, 7006-7012 (1990).
36. M. Glick, F. Reinhart, G. Weimann, and W. Schlapp, 'Quadratic electro‐optic light modulation in a GaAs/AlGaAs multiquantum well heterostructure near the excitonic gap,' Applied Physics Letters 48, 989-991 (1986).
37. W. Liu, B. Liang, D. Huffaker, and H. Fetterman, 'Anisotropic electro-optic effect on InGaAs quantum dot chain modulators,' Optics Letters 38, 4262-4264 (2013).
38. D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, 'Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,' Physical Review Letters 53, 2173 (1984).
39. V. Lucarini, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).
40. J. S. Weiner, D. A. Miller, and D. S. Chemla, 'Quadratic electro‐optic effect due to the quantum‐confined Stark effect in quantum wells,' Applied Physics Letters 50, 842-844 (1987).
41. K. Ravikumar, T. Aizawa, K. Matsubara, M. Asada, and Y. Suematsu, 'Analysis of electric field effect in quantum box structure and its application to low-loss intersectional type optical switch,' Journal of Lightwave Technology 9, 1376-1385 (1991).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56305-
dc.description.abstract本篇論文中我們演示了單石波導耦合式砷化銦量子點微碟調制器,藉由數值模擬以及製程技術來設計元件結構,我們達成了在單一基板上微碟共振腔與波導之間光能量的相互耦合。元件製程方面因結構尺寸要求較為精準,製程主要是由電子束微影及乾式電漿輔助蝕刻來達成。
  我們利用光纖為主體之穿透實驗架構來探討元件之光特性。藉由觀察穿透頻譜之規則性凹陷並與模擬數據對照,可證實微共振腔與波導之間的耦合現象。本研究觀察到共振腔品質因子約為300,共振模態所造成之凹陷深度可達15dB。我們可藉由微調微碟大小及共振腔-波導間距來調整光耦合的強度,以最佳化光調製時之消光比(extinction ratio)。我們對元件施加外部電場,觀察到Kerr效應造成的共振模態波長紅移現象,並可藉由調控微碟共振腔之跨壓來控制模態平移量,量測到之Kerr係數達8.88×〖10〗^(-18) m^2/V^2,此係數比砷化鎵塊材與量子井結構都來得高。我們由基本物理原理出發,以量子侷限Stark效應(quantum confined Stark effect)及克拉莫-克若尼關係式(Kramers-Kronig relations)來探討與解釋此增強之電光效應。  最後,我們亦利用時間解析量測實際演示了元件之光調製行為,光訊號之消光比可達1.47,證實了量子點微碟共振腔於光調制器之應用。 
zh_TW
dc.description.abstractIn this thesis, we demonstrate the monolithic integration of an InAs quantum-dot microdisk modulator and its waveguide coupling structure. By designing the coupling structure with numerical simulation and fabrication technique, we verify the monolithic mode coupling between the microdisk and the waveguide. The device was fabricated by process mainly based on electron beam lithography and dry plasma etching in order to define the structure precisely.
Optical characterization was performed by a fiber-based transmission measurement setup. Mode coupling between the cavity and the waveguide was confirmed by measuring the transmission spectrum through the waveguide. Quality factors of the microdisk cavity were found to be about 300. Depth of dips up to 15dB is observed at the resonance wavelength of whispering-gallery modes of the microdisk cavity. The strength of mode coupling can be controlled by varying the disk size and the cavity-waveguide gap. Mode shift owing to the electric-field-induced refractive index change can be observed when a negative bias is applied to the microdisk cavity. By varying the voltage over the cavity, transmitted light with specific wavelength could be modulated through Kerr effect. The quadratic electro-optic coefficient was found to be 8.88×〖10〗^(-18) m^2/V^2, which is larger than that in bulk GaAs materials and in GaAs/AlGaAs quantum well structures. From the aspect of fundamental physical theory, the measured electro-optic effect is attributed to the quantum confined Stark effect and Kramers-Kronig relations.
The optical modulation is also demonstrated through time-resolved measurement, and the extinction ratio of 1.47 can be achieved. The quantum-dot microdisk cavities show the potential for optical modulation applications.  
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:22:42Z (GMT). No. of bitstreams: 1
ntu-103-R01941055-1.pdf: 2691229 bytes, checksum: 3f878dd2836950d42a96436e1fac35a1 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 i
Abstract ii
Table of Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 On-chip Optical Communications 2
1.2 Optical Modulations 3
1.3 Outline of the Thesis 6
Chapter 2 Quantum Dots and Optical Microcavities 7
2.1 Quantum Dots 7
2.1.1 Quantum Confinement Effect 8
2.1.2 Quantum-Dot-Enhanced Electro-Optic Effect 10
2.2 Microcavities 11
2.2.1 Derivations of Whispering-Gallery Modes in a Cylinder Cavity 13
2.2.2 Quality Factors 17
2.3 Microdisk-Waveguide Coupling 18
2.3.1 Transmission Spectra 19
2.3.2 Width of Waveguides 21
2.3.3 Gap between Cavities and Waveguides 22
Chapter 3 Device Fabrications 24
3.1 Sample Descriptions and Preparations 24
3.2 Growth of Hard Mask 26
3.3 E-beam Lithography and Hard Mask Etching 27
3.4 Etching of Epi-Layers 29
3.5 Planarization 30
3.6 Photolithography for P-side Electrodes 31
3.7 P-side Electrode Evaporation and Metal Lift-off 32
3.8 N-side Grinding and Electrode Evaporation 33
Chapter 4 Measurements and Results 35
4.1 Measurement Schemes 35
4.2 Transmission Measurements 36
4.3 Electric-Field-Induced Refractive Index Changes 44
4.4 Analysis and Discussions 48
Chapter 5 Conclusions and Future Directions 55
5.1 Conclusions 55
5.2 Future Directions 56
Reference 57
dc.language.isoen
dc.subject調制器zh_TW
dc.subject微碟zh_TW
dc.subject量子點zh_TW
dc.subjectquantum doten
dc.subjectmicrodisken
dc.subjectmodulatoren
dc.title單石波導耦合式砷化銦量子點微碟調制器zh_TW
dc.titleMonolithic Waveguide-Coupled InAs Quantum-Dot Microdisk Modulatorsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄(Hao-Hsiung Lin),李峻霣(Jiun-Yun Li),王智祥(Jyh-Shyang Wang)
dc.subject.keyword量子點,微碟,調制器,zh_TW
dc.subject.keywordquantum dot,microdisk,modulator,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2014-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved