Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56301
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖(Hoang Yan Lin)
dc.contributor.authorMing-Yi Linen
dc.contributor.author林明毅zh_TW
dc.date.accessioned2021-06-16T05:22:33Z-
dc.date.available2019-08-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation[1] K. C. Huang, 'Study of evaluation metrics for image qualities of 2-view type stereoscopic and auto-stereoscopic displays,' Ph.D. dissertation, National Taiwan University, Taipei, Taiwan, (2014).
[2] C. Wheatstone, 'Contributions to the Physiology of Vision.—Part the First. On some remarkable and hitherto unobserved, phenomena of binocular vision,' Philosophical Transctions of the Royal Society of London, pp.371-394 (1838).
[3] C. Wheatstone, 'Contributions to the Physiology of Vision.—Part the Second. On some remarkable and hitherto unobserved, phenomena of binocular vision (continued),' Philosophical Transctions of the Royal Society of London, part I, pp.1-17 (1852).
[4] S. A. Benton, “Selected Papers on Three-Dimensional Displays,” SPIE, Vol. MS 216 (2001).
[5] W. Funk, “History of autostereoscopic cinema,” in Proc. SPIE, Vol. 8288 (2012).
[6] R. Leggat, “A History of Photography,” (1995).
[7] G. Lippmann, 'Epreuves reversibles,' Comptes Rendus de 'Academie des Sciences 146, 446-451 (1908).
[8] K. C. Huang, C. H. Tsai, K. Lee, and W. J. Hsueh 'Fabricating microretarders by CO2 laser heating process technology ' Optical Engineering, (2001).
[9] B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), p.36–41 (2013).
[10] C. W. Kanolt, “Photographic Method and Aparatus,” US Patent 1260682 (1918).
[11] L. Hammond, 'Stereoscopic motion-picture device,' US 1506524 (1924).
[12] P. Corporation, “Three –dimensional projection with circular polarizers,” in Proc. SPIE, Vol. 462 (1984).
[13] E. H. Land, “Some Aspects of the Development of Sheet Polarizers,” J. Opt. Soc. Am. 11, 957 (1951).
[14] Ryan, W. H., in New screen Techniques, M. Quigley, Jr., ed., Quigley Publishing Co. 1953. pp. 21 -33.
[15] P. Hariharan, “Basic of Holography,” Cambridge, (2002).
[16] J. A. Castellano, “Handbook of Display Technology,” Academic Press, San Diego, (1992).
[17] N. Holliman, “3-D Display Systems,” Department of Computer Science, University of Durham, (2005).
[18] N, Holliman, “3D Display Systems,” Handbook of Optoelectronics, IOP Press, (2002).
[19] 黃怡菁, 黃乙白, 謝漢萍 “3D立體顯示技術,”《科學發展》, 451期, 46~52頁, 2010年7月.
[20] C. Y. Hsu and Y. P. Huang, '3D 立體顯示技術之發展與研究,' 光學工程, pp. 53-60, 2007年.
[21] 蔡朝旭, '前瞻3D顯示技術,' 2006年1月.
[22] J. S. Kollin, S. A. Benton, and M. L. Jepsen, “Real-Time Display of 3-D Computed Holograms by Scanning the Image of an Acoustic-Optic Modulator,” SPIE Proceedings, Vol. 1212, p.174 (1990).
[23] W. H. Hsu, “Image Quality Control Method for 3D Auto-stereoscopic Displays,” M.S. thesis, National Taiwan University, Taipei, Taiwan, (2013).
[24] W. H. Chang, “A Study on Viewing Zone of Auto-stereoscopic 3D Displays,” M.S. thesis, National Taiwan University, Taipei, Taiwan, (2012).
[25] M. F. Buchroithner, O. Walder, K. Habermann, B. Konig, T. Grundemann, G. Neukum and the HRSC Co-Investigator Team, “True-3D Visualization of the Martian Surface Based on Lenticular Foil Technology Using HRSC Imagry,” Commission IV, WG IV/9
[26] C. Berkel, “Image Preparation for 3D LCD,” SPIE Proceeding, Vol. 3639, p.84 (1999).
[27] I. Sexton, “Parallax Barrier 3-D TV”, SPIE Proceeding, Vol. 1083, p. 84 (1989).
[28] H. Nam, J. Lee, H. Jang, M. Song, and B. kim, “Auto-Stereoscopic Swing 3D Display,” SID Digest, p.94, (2005).
[29] Planar Systems, Inc, “3D Displays –Technologies & Testing Methods,”2011.
[30] P. Boher, T. Leroux, V. C. Patton and T. Bignon, “Polarized based stereoscopic 3D display characterization using Fourier optics instrument & computation in the observer space,” IDW, pp.2077-2080 (2009).
[31] M. Ishiguro, K. Ohmuro, Y. Saitoh, Y. Takahashi, J. Watanabe, T. Arai, Y. Ito, and K. Mihayashi, “A novel quarter-wave retardation film for improving viewing angle properties in time-sequential stereoscopic 3D-LCDs,” JSID, vol. 20(11), pp.598-603 (2012).
[32] M. Ishiguro, K. Ohmuro, Y. Saitoh, Y. Takahashi, J. Watanabe, K. Miyazaki and K. Mihayashi, “Quarter Wave Retardation Film for Improving Viewing Angle Properties in Time-Sequential Stereoscopic 3D Liquid Crystal Displays,” SID Digest, pp.83-85, (2011).
[33] C. H. Tsai, K. Lee, K. C. Huang, C.K. Lee, “Fabricating Polymeric Micro-retardation Arrays for Autostereoscopic Display System by CO2 Laser Heat Processing Technology,” SPIE Proceeding, Vol. 3957, pp.142-152 (2000).
[34] S. J. Lee, M. J. Kim, K. H. Lee, and K. H. Park, “Review of Wire Grid Polarizer and Retarder for Stereoscopic Display,” SPIE Proceeding, Vol. 7237, (2009).
[35] V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh, “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 24, 1044 (1999).
[36] J. A. Delaire, and K. Nakatani, “Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials,” Chem. Rev. 100, 1817(2000).
[37] J. Chen, D. L. Johnson, P. J. Bos, X. Wang, and J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E 54, 1599 (1996).
[38] M.Y. Lin, T. H. Tsai, Y. L. Kang, Y. C. Chen, Y. H. Huang, Y. J. Chen, X. Fang, H. Y. Lin, W. K. Choi, L. A. Wang, C. C. Wu, and S. C. Lee “Design and fabrication of birefringent nano-grating structure for circularly polarized light emission,” Opt. Express 22(7), 7388-7398 (2014).
[39] M. Y. Lin, H. H. Chen, K. H. Hsu, Y. H. Huang, Y. J. Chen, H. Y. Lin, Y. K. Wu, Lon A. Wang, C. C. Wu, and S. C. Lee, “White Organic Light Emitting Diode with Linearly Polarized Emission,” IEEE Photon. Technol. Lett. 25, 1321 (2013).
[40] H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, and S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Appl. Phys. Lett. 97, 163112 (2010).
[41] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on(0001)oriented sapphire substrates,” Appl. Phys. Lett. 91, 051117 (2007).
[42] T Kim, A. Danner, and K. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” Electronic. Lett. 41, 20 (2005).
[43] L. Zhang, J. H. Teng, S. J. Chua, and E.A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95, 261110 (2009).
[44] F. T. Chuang, P. Y. Chen, Y. W. Jiang, M. Farhat, H. H. Chen, Y. C. Chen, S. C. Lee, “Nanoprojection lithography using self-assembled interference modules for manufacturing plasmonic gratings,” IEEE Photon. Technol. Lett. 24, 1273 (2012).
[45] Y. K. Wu, J. H. Huang, W. W. Tsai, Y. P. Chen, S. C. Lin, Y. Hsu, H. W. Zan, H. F. Meng, and Lon A. Wang, “Solution-Processed Vertical Organic Transistors Fabricated by Nanoimprint Lithography,” IEEE Electr. Device L. 34, 2 (2013).
[46] Y. P. Chen, C. H. Chen, J. H. Chang, H. C. Chiu, G. Y. Chen, C. H. Chiang, L. S. Chen, C. T. Tseng, C. H. Lee, J. Y. Yen, and Lon A. Wang, “Stitching periodic submicron fringes by utilizing step-and-align interference lithography,” J. Vac. Sci. Technol. B 27 (2009).
[47] Y. P. Chen, C. P. Lee, J. H. Chang, and Lon A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26 (2008).
[48] Y. P. Chen, C. H. Lee and Lon A. Wang, “Fabrication and characterization of multi-scale microlens arrays with anti-reflection and diffusion properties,” Nanotechnology, 22, 215303 (2011).
[49] Y. P. Chen, C. H. Chen, J. H. Chang, G. Y. Chen, C. H. Chiang, C. T. Tseng, C. H. Lee, and L. A. Wang, “Fabrication and measurement of large-area sub-wavelength structures with broadband and wide-angle antireflection effect,” Microelectronic Engineering, 87, pp.1323–1327 (2010).
[50] L. S. Chen, J. Y. Yen, Y. P. Chen, L. A. Wang, T. T. Chung, H. I. Lin, P. H. Chen, and S. H. Chang, “Longitudinal stitching of sub-micron periodic fringes on a roller,” Microelectronic Engineering, 88, pp.3235–3243 (2011).
[51] Y. W. Jiang, L. D. Tzuang, Y. H. Ye, Y. T. Wu, M. W. Tsai, C. Y. Chen, and S. C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express, vol. 17, no. 4, pp. 2631–2637 (2009).
[52] D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, amd C. K Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express, vol. 14, no. 8, pp. 3503–3511 (2006).
[53] N. F. Chiu, C. Yu, S. Y. Nien, J. H. Lee, C. H. Kuan, K. C. Wu, C. K. Lee and C. W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express, vol. 15, no. 18, pp. 11608–11615 (2007).
[54] Y. He, R. Hattori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE Electron Device Lett., vol. 21, no. 12, pp. 590–592 (2000).
[55] M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, “Flexible AM OLED panel driven by bottomcontact OTFTs,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 249–251 (2006).
[56] G. R. Chaji, C. Ng, A. Nathan, A. Werner, J. Birnstock, O. Schneider, and J. B. Nimoth, “Electrical compensation of OLED luminance degradation,” IEEE Electron Device Lett., vol. 28, no. 12, pp. 1108–1110 (2007).
[57] F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays, vol. 25, nos. 2–3, pp. 99–108 (2004).
[58] T. Koyama, et al., “Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1−xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates,” Appl. Phys. Lett., vol. 89, no. 9, pp. 091906-1–091906-3 (2006).
[59] K. C. Shen, et al., “Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett., vol. 93, no. 23, pp. 231111-1–231111-3 (2008).
[60] K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Jandke, and P. Strohriegl, “Highly polarized blue electroluminescence from homogeneously aligned films of poly (9, 9-dioctylfluorene),” Appl. Phys. Lett., vol. 76, no. 20, pp. 2946–2948 (2000).
[61] T. Mitevaa, A. Meisel, M. Grell, H.G. Nothofer, D. Lupo, A. Yasuda, W. Knoll, L. Kloppenburg, U.H.F. Bunz, U. Scherf, and D. Neher, “Polarized electroluminescence from highly aligned liquid crystalline polymers,” Synth. Metals, vol. 111–112, pp. 173–176 (2000).
[62] M. Ma, D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, G. B. Kim, M. H. Kim and C. Sone, “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Appl. Phys. Lett., vol. 101, no. 6, pp. 061103-1–061103-4 (2012).
[63] M. Vasilopoulou, L. C. Palilis, A. Botsialas, D. G. Georgiadou, P. Bayiati, N. Vourdas, P. S. Petrou, G. Pistolis, N. A. Stathopoulos, and P. Argitis, “Flexible organic light emitting diodes (OLEDs) based on a blue emitting polyfluorene,” Phys. Status Solidi (c), vol. 5, no. 12, pp. 3658–3662 (2008).
[64] K. H. Weinfurtner, H. Fujikawa, S. Tokito, and Y. Taga, “Highly efficient pure blue electroluminescence from polyfluorene: Influenceof the molecular weight distribution on the aggregation tendency,” Appl. Phys. Lett., vol. 76, no. 18, pp. 2502–2504 (2000).
[65] C.Y. Lee C. Y. Lee, J. Y. Wang, Y. Chou, C. L. Cheng , C. H. Chao, S. C. Shiu, S. C. Hung, J. J. Chao , M. Y. Liu, W. F. Su , Y. F. Chen and C. F. Lin, “White-light electroluminescence from ZnO nanorods/polyfluorene by solution-based growth,” Nanotechology, vol. 20, no. 42, pp. 425202-1–425202-5 (2009).
[66] D. K. Cheng, “Field and wave electromagnetic,” Addison-Wesley, 1989.
[67] X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt., 43, pp. 6400–6406 (2004).
[68] A. Lizana, N. Martin, M. Estape, E. Fernandez, I. Moreno, A. Marquez, C. Iemmi, J. Campos and M. J. Yzuel, “Influence of the incident angle in the performance of Liquid Crystal on Silicon displays,” Opt. Express, 17, pp. 8491–8505 (2009).
[69] R. Dou and M. K. Giles, “Phase measurement and compensation of a wave front using a twisted nematic liquid-crystal television,” Appl. Opt., 35, pp. 3647–3652 (1996).
[70] A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt., 34, pp. 5133–5139 (1995).
[71] T. H. Barnes, T. Eiju, K. Matusda, and N. 0oyama, “Phase-only modulation using a twisted nematic liquid crystal television,” Appl. Opt., 28, pp. 4845–4852 (1989).
[72] Y. Yang, R. C. Costa, M. J. Fuchter, and A. J. Campbell, “Circularly polarized light detection by a chiral organic semiconductor transistor,” Nat. Photonics, 7, pp. 634–638 (2013).
[73] Y. Yang, R. C. Costa, D. Smilgies, A. J. Campbell, and M. J. Fuchter, “Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant,” Adv. Mater., 25, pp. 2624–2628 (2013).
[74] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 mm,” Appl. Opt., 35, pp. 6195–6202 (1996).
[75] H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt., 36, pp. 1566–1572 (1997).
[76] A. G. Lopez and H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt., 40, pp. 2068–2075 (2001).
[77] W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure,” Appl. Opt., 45, pp. 2601–2606 (2006).
[78] G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express, 5, pp. 163–168 (1999).
[79] B. Paivanranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express, 16, pp. 16334–16342 (2008).
[80] A. G. Lopez and H. G. Craighead, “Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating,” Opt. Lett., 23, pp. 1627–1629 (1998).
[81] S. Y. Hsu, K. L. Lee, E. H. Lin, M. C. Lee, and P. K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett., 95, pp. 013105-1–013105-3 (2009).
[82] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am., A 3, pp. 1780–1787(1986).
[83] T. Tamir and S. Zhang, “Modal transmission-line theory of multilayered grating structures,” J. Lightwave Technol., 14, pp. 914–927 (1996).
[84] S. O. Kasap, “Optoelectronics and photonics,” Prentice Hall, 2011.
[85] L. Moreno and F. Garcia-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express, 12, pp. 3619–3628 (2004).
[86] I. Barth, J. Manz, Y. Shigeta, and K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin,” J. Am. Chem. Soc., 128, pp. 7043–7049 (2006).
[87] M.Y. Lin, Y. L. Kang, Y. C. Chen, T. H. Tsai, S. C. Lin, Y. H. Huang, Y. J. Chen, C. Y. Lu, H. Y. Lin, L. A. Wang, C. C. Wu, and S. C. Lee, “Plasmonic ITO-free polymer solar cell,” Opt. Express, 22, pp. 438–445 (2014).
[88] L. Chen, Y. Tu, W. Liu, Q. Li, K. Teunissen, and I. Heynderickx, “Investigation of crosstalk in a 2-view 3D display,” SID Symposium Digest of Technical Papers, 39, pp. 1138–1141 (2008).
[89] R. Kaptein and I. Heynderickx, “Effect of crosstalk in multi-view autostereoscopic 3D displays on perceived image quality,” SID Symposium Digest of Technical Papers, 38, pp. 1220–1223 (2007).
[90] H. Kikuta, H. Toyota, and W. Yu, “Optical Elements With SubWavelength Structured Surfaces” Opt. Rev. 10, 63 (2003).
[91] D. X. Zhu, W. D. Shen, and H. Y. Zhen, “Anisotropic optical constants of in-plane oriented polyfluorene thin films on rubbed substrate,” J. Appl. Phys. 106, pp. 084504-1–084504-5 (2009).
[92] T. R. Andersen, H. F. Dam, B. Andreasen, M. Hosel, M. V. Madsen, S. A. Gevorgyan, R. R. Sondergaard, M. Jorgensen, and F. C. Krebs, “A rational method for developing and testing stable flexible indium- and vacuum-free multilayer tandem polymer solar cells comprising up to twelve roll processed layers,” Sol. Energy Mater. Sol. Cells, 120, pp. 735–743 (2014).
[93] D. Angmo, S. A. Gevorgyan, T. T. Larsen-Olsen, R. R. Sondergaard, M. Hosel, M. Jorgensen, R. Gupta, G. U. Kulkarni, and F. C. Krebs, “Scalability and stability of very thin, roll-to-roll processed, large area, indium-tin-oxide free polymer solar cell modules,” Org. Electron., 14, pp. 984–994 (2013).
[94] R. R. Sondergaard, M. Hosel, and F. C. Krebs, “Roll-to-Roll Fabrication of Large Area Functional Organic Materials,” J. Polym. Sci. Pol. Phys., 51, pp. 16–34 (2013).
[95] D. Angmo, I. Gonzalez-Valls, S. Veenstra, W. Verhees, S. Sapkota, S. Schiefer, B. Zimmermann, Y. Galagan, J. Sweelssen, M. Lira-Cantu, R. Andriessen, J. M. Kroon, and F. C. Krebs, “Low-Cost Upscaling Compatibility of Five Different ITO-Free Architectures for Polymer Solar Cells,” J. Appl. Polym. Sci., 130, pp. 944–954 (2013).
[96] N. Espinosa, F. O. Lenzmann, S. Ryley, D. Angmo, M. H‥osel, R. R. Sondergaard, D. Huss, S. Dafinger, S. Gritsch, J. M. Kroon, M. Jorgensen and F. C. Krebs, “OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools,” J. Mater. Chem. A, 1, pp. 7037–7049 (2013).
[97] Y. H. Huang, C. Y. Lu, S. T. Tsai, Y. T. Tsai, C. Y. Chen, W. L. Tsai, C. Y. Lin, H. W. Chang, W. K. Lee, M. Jiao, and C. C. Wu, “Enhancing light out-coupling of organic light-emitting devices using indium tin oxide free low-index transparent electrodes,” Appl. Phys. Lett., 104, pp. 183302-1–183302-5 (2014).
[98] J. Frischeisen, Q. Niu, A. Abdellah, J. B. Kinzel, R. Gehlhaar, G. Scarpa, C. Adachi, P. Lugli, and W. Brutting, “Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings,” Opt. Express, 19, pp. A7–A19 (2011).
[99] P.A. Hobson, S. Wedge, J.A.E. Wasey, I. Sage and W.L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater., 14, pp. 1393–1396 (2002).
[100] B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes and I. D. W. Samuel, “Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode,” Adv. Mater., 13, pp. 123–127 (2001).
[101] Y. R. Do, Y.C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim and Y. H. Lee, “Enhanced Light Extraction from Organic Light-Emitting Diodes with 2D SiO2/SiNx Photonic Crystals,” Adv. Mater., 15, pp. 1214–1218 (2003).
[102] Yu Bai, J. Feng, Y. F. Liu, J. F. Song, J. Simonen, Y. Jin, Q. D. Chen, J. Zi, and H. B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron., 12, 1927-1935 (2011).
[103] U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys., 104, pp. 093111-1–093111-5 (2008).
[104] L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics, 6, pp. 180–185 (2012).
[105] J. You , C. C. Chen , L. Dou , S. Murase , H. S. Duan ,S. A. Hawks , T. Xu , H. J. Son , L. Yu , G. Li , and Y. Yang, “Metal Oxide Nanoparticles as an Electron-Transport Layer in High-Performance and Stable Inverted Polymer Solar Cells,” Adv. Mater., 24, pp. 5267-5272 (2012).
[106] L. Dou, J. Gao, E. Richard, J. You, C. C. Chen, K. C. Cha, Y. He,G. Li, and Y. Yang, “Systematic Investigation of Benzodithiophene and Diketopyrrolopyrrole Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells,” J. Am. Chem. Soc., 134, pp. 10071−10079 (2012).
[107] G. Li, R. Zhu and Y. Yang, “Polymer solar cells,” Nat. Photonics, 6, pp. 153-161 (2012).
[108] C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett., 96, pp. 133302-1–133302-3 (2010).
[109] Y. Zhan, J. Zhao, C. Zhou, X. Wang, Y. P. Li, and Y. Li, “Surface Plasma Coupled Photovoltaic Cell With Double Layered Triangular Grating,” IEEE Photon. J., 4, pp. 1021–1026 (2012).
[110] K. Tvingstedt, and O. Inganas, “Electrode Grids for ITO-free Organic Photovoltaic Devices,” Adv. Mater., 19, pp. 2893-2897 (2007).
[111] J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide ITO-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett., 94, pp. 013303-1–013303-3 (2009).
[112] Y. Galagan, J. Rubingh, R. Andriessen, C. Fan, P. Blom, S. Veenstra, J. Kroon, “ITO free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells, 94, pp. 1339–1343 (2011).
[113] J. Meiss, N. Allinger, M. Riede, and K. Leo, “Improved light harvesting in tin doped indum oxide ITO free inverted bulk heterojunction organic solar cells using capping layers,” Appl.Phys. Lett., 93, pp. 103311-1–103311-3 (2008).
[114] S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, “Efficient and Flexible ITO Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater., 20, pp. 4061-4067 (2008).
[115] B. luk’yanchuk, N. I. Zheludev, S. A. maier, N. J. Halas, P. nordlander, H. Giessen and C. T. Chong, “the Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater., 9, pp. 707–715 (2010).
[116] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., 9, pp. 207–213 (2010).
[117] Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology, 21, 235201 (2010).
[118] C. I. Ho, D. J. Yeh, V. C. Su, C. H. Yang, P. C. Yang, M. Y. Pu, C. H. Kuan, I. C. Cheng, and S. C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys., 112, 023113-1–023113-5 (2012).
[119] C. E. Petoukhoff, D. K.Vijapurapu, and D. M.O’Carroll, “Computational comparison of conventional and inverted organic photovoltaic performance parameters with varying metal electrode surface workfunction,” Sol. Energy Mater. Sol. Cells, 120, 572–583 (2014).
[120] N. Sekine, C. H. Chou, W. L. Kwan, Y. Yang, “ZnO nano-ridge structure and its application in inverted polymer solar cell,” Org. Electron., 10, pp. 1473-1477 (2009).
[121] M. Y. Lin, C. Y. Lee, S. C. Shiu, I. J. Wang, J. Y. Sun, W. H. Wu, Y. H. Lin, J. S. Huang, C. F. Lin, “Sol gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells,” Org. Electron., 11, pp. 1828-1834 (2010).
[122] M. Y. Liu, C. H. Chang, C. H. Chang, K. H. Tsai, J. S. Huang, C. Y. Chou, I. J. Wang, P. S. Wang, C. Y. Lee, C. H. Chao, C. L. Yeh, C. I. Wu, and C. F. Lin, “Morphological evolution of the poly(3-hexylthiophene) / [6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol–gel derived zinc oxide electron selective layer,” Thin Solid Films, 518, pp. 4964-4969 (2010).
[123] M. Zhang, T. L. Chiu, C. F. Lin, J. H. Lee, J. K. Wang, and Y. f. Wue, “Roughness characterization of silver oxide anodes for use in efficient top-illuminated organic solar cells,” Sol. Energy Mater. Sol. Cells, 95, pp. 2606-2609 (2011).
[124] H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer-Modified ZnO/Metals as Cathodes,” Adv. Mater., 20, pp. 2376-2382 (2008).
[125] T. Ameri, G. Dennler, C. Waldauf, H. Azimi, A. Seemann, K. Forberich, J. Hauch, M. Scharber, K. Hingerl, and C. J. Brabec, “Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk-Heterojunction Organic Solar Cells in an Inverted Structure,” Adv. Funct. Mater., 20, pp. 1592-1598 (2010).
[126] F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells, 95, pp. 1785-1799 (2011).
[127] R. Steim, F. R. Kogler and C. J. Brabec, “Interface materials for organic solar cells,” J. Mater. Chem., 20, pp. 2499-2512 (2010).
[128] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys., 6, pp. 6849-6854 (2003).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56301-
dc.description.abstract本論文探究如何利用奈米光柵結構製作出不同類型的極化出光元件,使其應用於極化3D立體顯示系統。金屬奈米光柵結構有很高的熱穩定性,適合用於現代的顯示系統。奈米結構分別使用了雷射干涉曝光顯影、電子束曝光顯影與奈米壓印的方式來製作。根據不同的製程方式,我們對應設計出適合的偏光片與四分之一波片。此外,奈米光柵結構也可以當作透明電極使用,並且應用在太陽能電池或是極化出光元件上。本論文主要分為四個部分:線極化出光元件應用於3D顯示,圓極化出光元件應用於3D顯示,使用奈米結構做為透明電極與光柵的影像品質分析。
第一部分,多種不同方式製作出來的奈米光柵被設計用來製作偏光片。當可見光波長在400奈米到700奈米內,偏光片可以讓入射TM波穿透且反射TE波以達成偏光效果。為了確保極化光有高極化率,入射光的穿透頻譜與極化率都事前用嚴格耦合波分析法(RCWA)來進行模擬。當把這個技術應用到有機發光二極體(OLED),可以製作出有極化出光的綠光OLED與白光OLED,而且極化率可以到達接近90%。
第二部分,本論文使用一個簡單的方法量測兩光軸間的相位差與圓偏振極化光的橢偏率。利用奈米光柵結構設計並且製作窄頻的相位延遲片,穿透光的極化特性也根據理論與實驗結果進行分析。所有圓偏振出光的橢偏率都可以到達接近90%,並且不同相對應的元件彼此之間的交互干擾(cross-talk)都可以低於7%。此外,我們也製作金屬奈米光柵設計的寬頻四分之一波片,因為寬頻四分之一波片在可見光波段都有效,所以此項技術可以簡化3D立體顯示系統的製程。而此寬頻的光柵元件也進一步與線偏振出光OLED結合以達成圓偏振出光OLED的製作。
第三部分,使用嵌入式的光柵結構來保護光柵並且同時當作極化濾波片與透明電極。嵌入式結構的OLED展現高發光效率與高極化率的出光,在未來的3D立體顯示產業有很大的潛力。另一方面,在太陽能電池的應用,奈米光柵透明電極可以增加太陽能電池主動層內的光場強度並且增加主動層的吸收。TM入射波在主動層內可以產生SPP模態而TE入射波則可以激發波導模態。表面電漿式非使用銦錫氧化物(ITO)的有機高分子太陽能電池效率可以達到3.64%。
第四部分,基於上述的研究結果,這邊模擬了極化3D立體顯示系統的影像,以便了解影像品質與交互干擾的關係。此外,相對應的光學系統也架設以模擬實際3D立體顯示系統。為了觀察影像的均勻度,這邊除了使用輝度計外,也實際拍攝了照片。奈米光柵結構的寬頻四分之一波片在雷射3D投影系統應用上將有很大的潛力。
zh_TW
dc.description.abstractThe thesis explores various polarized emitting light source in polarized 3D system application by utilizing nano-grating structures. The temperature stability of the metal nano-grating structures is high, such that it is suitable for the modern display system. The nano-grating structures are fabricated by laser interference lithography, e-beam lithography and nano-imprint process, respectively. According to different fabrication processes, the samples are designed to function as a polarizer or a quarter wave plate. Moreover, nano-structure also works as a transparent electrode, which can be used in solar cell or polarized organic light emitting diode (OLED) devices. The thesis is divided into four primary tasks: linearly polarized OLED for 3D system, circularly polarized OLED for 3D system, nano-grating structure for transparent electrode and the image quality of 3D system based on nano-grating structures.
First, the metal nano-grating structures prepared by various fabrication processes are designed to function as a polarization selector to allow transmission for transverse magnetic (TM) wave and reflect transverse electric (TE) wave in the wavelength range of 400-700 nm. The transmission spectra and polarization characteristics of the designed sample are simulated by rigorous coupled wave analysis (RCWA) method to ensure the high polarization ratio of the emission light. By applying this technology to OLEDs, we successfully fabricated a green and a white light OLED with linearly polarized emission. The polarization ratio can reach around 90%.
Second, a simple method to measure the phase difference between two optical axis and the ellipticity of the circularly polarized light is demonstrated. The nano-grating structures working as the phase retarder are designed for narrow wavelength band, and then fabricated. The polarized characteristics of transmitted light are estimated theoretically and experimentally. The ellipticity of circularly polarized emission for all samples can reach around 90% and the cross-talk of those of samples are smaller than 7%. In addition, the metal grating quarter wave plate operating in the wavelength range of 400–700 nm is also designed and fabricated. It can simplify the fabrication of 3D system as the sample can function as a phase retarder in visible wavelength range. The nano-grating sample is further combined with linearly polarized OLED to form a circularly polarized OLED.
Third, the embedded grating structure is used to protect the grating from damage, and simultaneously function as the polarizing filter and the transparent electrode. The OLED with embedded structure can exhibit highly polarized emission and high efficiency, which has great potential in the future 3D display industries. On the other hand, for the application of the solar cell, the nano-grating transparent electrode is used to enhance the field intensities in the active layer and increase the absorption of the active layer. The TM wave can generate the surface plasmon polariton (SPP) mode, and the TE wave can excite the wave guide mode at the active layer. The power conversion efficiency of the plasmonic ITO-free polymer solar cell can reach as high as 3.64%.
Fourth, in terms of previous tasks, the images of the polarized 3D display system are simulated to understand the relation between the image quality and cross-talk. In addition, the optical components are also arranged to simulate the real 3D system. To observe the uniformity of the images, we not only measure the brightness of the images by luminous-meter but also take the photography. The nano-grating quarter wave plate shows a great potential in the application of polarized 3D laser projector system.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:22:33Z (GMT). No. of bitstreams: 1
ntu-103-D99941004-1.pdf: 6678343 bytes, checksum: 3b3deddb31c4d88352f42072f1225619 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xvii
Chapter 1 Introduction to 3D display technologies 1
1.1 Background and History of the 3D industry 1
1.2 Working principle and Classification of the modern 3D technologies 9
1.3 Motivation 14
1.4 Dissertation organization 16
Chapter 2 Nano-grating structure for linearly polarized emission 17
2.1 The design of nano-grating polarizer 18
2.1.1 Laser Interference lithography 18
2.1.2 E-beam lithography 23
2.1.3 Nano-imprint 25
2.2 Linearly polarized OLEDs 28
2.2.1 Green OLED with linearly polarized emission 29
2.2.2 White OLED with linearly polarized emission 32
Chapter 3 Nano-grating structure for circularly polarized emission 35
3.1 Experiment setup for measuring the optical property of circularly polarized light 35
3.1.1 The phase measurement 35
3.1.2 The ellipticity measurement 39
3.2 Design the nano-grating to function as a quarter wave plate 40
3.2.1 Nano-grating as a quarter wave plate for narrow wavelength band 41
3.2.2 Nano-grating as a quarter wave plate for broadband 53
3.3 Circularly polarized OLEDs 57
Chapter 4 Nano-grating /PEDOT for transparent electrode 61
4.1 Linearly polarized OLED with embedded grating/PEDOT electrode 61
4.2 Polymer solar cell with embedded grating/PEDOT electrode 70
Chapter 5 The 3D image quality for polarized 3D system 81
5.1 Model the polarized 3D system in LightTools 81
5.2 The image quality of 3D system 85
5.2.1 The image quality of 3D system based on nano-grid polarizer 86
5.2.2 The image quality of 3D system based on nano-grating quarter wave plate 88
5.3 The real image in 3D system 90
5.3.1 3D display system with nano-grating quarter wave plate 90
5.3.2 3D laser projector system with nano-grating quarter wave plate 94
Chapter 6 Conclusions 97
REFERENCES 99
dc.language.isoen
dc.subject太陽能電池zh_TW
dc.subject奈米光柵結構zh_TW
dc.subject極化出光OLEDzh_TW
dc.subject3D立體顯示系統zh_TW
dc.subject偏光片zh_TW
dc.subject相位延遲片zh_TW
dc.subject嵌入式結構zh_TW
dc.subject非使用銦錫氧化物zh_TW
dc.subjectembedded structureen
dc.subjectnano-gratingen
dc.subjectpolarized OLEDen
dc.subjectpolarizeren
dc.subjectphase retarderen
dc.subjectquarter wave plateen
dc.subject3D display systemen
dc.subjectITO-freeen
dc.subjectsolar cellen
dc.title奈米光柵結構應用於3D立體顯示zh_TW
dc.titleNano-grating structures for application of 3D display systemen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.coadvisor李嗣涔(Si-Chen Lee)
dc.contributor.oralexamcommittee吳忠幟(Chung-chih Wu),林浩雄(Hao-Hsiung Lin),吳肇欣(Chao-Hsin Wu),蔡永傑(Wing-Kit Choi),王倫(Lon A Wang)
dc.subject.keyword3D立體顯示系統,奈米光柵結構,極化出光OLED,偏光片,相位延遲片,嵌入式結構,非使用銦錫氧化物,太陽能電池,zh_TW
dc.subject.keyword3D display system,nano-grating,polarized OLED,polarizer,phase retarder,quarter wave plate,embedded structure,ITO-free,solar cell,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2014-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved