Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56290
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡宛珊(Christina W. Tsai)
dc.contributor.authorYen-Ting Linen
dc.contributor.author林彥廷zh_TW
dc.date.accessioned2021-06-16T05:22:06Z-
dc.date.available2016-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citation[1] Birsan, M.-V., Molnar, P., Burlando, P., and Pfaundler, M. (2005). 'Streamflow trends in Switzerland.' Journal of Hydrology, 314(1), 312-329.
[2] Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied hydrology, McGraw-Hill, New York.
[3] Frei, C., Davies, H. C., Gurtz, J., and Schar, C. (2000). 'Climate dynamics and extreme precipitation and flood events in Central Europe.' Integrated Assessment, 1(4), 281-300.
[4] Frei, C., and Schar, C. (2001). 'Detection probability of trends in rare events: Theory and application to heavy precipitation in the Alpine region.' Journal of Climate, 14(7).
[5] Hanson, F. B. (2007). Applied stochastic processes and control for jump-diffusions: modeling, analysis, and computation, Siam.
[6] Heemink, A. (1990). 'Stochastic modelling of dispersion in shallow water.' Stochastic hydrology and hydraulics, 4(2), 161-174.
[7] Hunter, J., Craig, P., and Phillips, H. (1993). 'On the use of random walk models with spatially variable diffusivity.' Journal of Computational Physics, 106(2), 366-376.
[8] Man, C. (2007). Stochastic modeling of suspended sediment transport in regular and extreme flow environments, ProQuest.
[9] Man, C., and Tsai, C. W. (2007). 'Stochastic partial differential equation-based model for suspended sediment transport in surface water flows.' Journal of engineering mechanics, 133(4), 422-430.
[10] Milstein, G. N., Schoenmakers, J. G., and Spokoiny, V. (2004). 'Transition density estimation for stochastic differential equations via forward-reverse representations.' Bernoulli, 10(2), 281-312.
[11] Molnar, P. (2001). 'Climate change, flooding in arid environments, and erosion rates.' Geology, 29(12), 1071-1074.
[12] Muste, M., Yu, K., Fujita, I., and Ettema, R. (2009). 'Two-phase flow insights into open-channel flows with suspended particles of different densities.' Environmental fluid mechanics, 9(2), 161-186.
[13] Oh, J. (2011). Stochastic particle tracking modeling for sediment transport in open channel flows, State University of New York at Buffalo.
[14] Oh, J., and Tsai, C. W. 'Estimation of particle concentrations using the stochastic particle tracking method in open channel flows.' Proc., World Environmental and Water Resources Congress, Providence, Rhode Island.
[15] Oh, J., and Tsai, C. W. (2010). 'A stochastic jump diffusion particle‐tracking model (SJD‐PTM) for sediment transport in open channel flows.' Water Resources Research, 46(10).
[16] Pope, S. (1994). 'Lagrangian PDF methods for turbulent flows.' Annual review of fluid mechanics, 26(1), 23-63.
[17] Rijn, L. C. v. (1984). 'Sediment transport, Part II: Suspended load transport.' Journal of Hydraulic Engineering, 110(11), 1613-1641.
[18] Ross, S. M. (2007). Introduction to probability models, Academic Press, Boston.
[19] Sawford, B., and Borgas, M. (1994). 'On the continuity of stochastic models for the Lagrangian velocity in turbulence.' Physica D: Nonlinear Phenomena, 76(1), 297-311.
[20] Schumer, R., Meerschaert, M. M., and Baeumer, B. (2009). 'Fractional advection‐dispersion equations for modeling transport at the Earth surface.' Journal of Geophysical Research: Earth Surface (2003–2012), 114(F4).
[21] Sharma, S., and Kavvas, M. (2005). 'Modeling noncohesive suspended sediment transport in stream channels using an ensemble-averaged conservation equation.' Journal of hydraulic engineering, 131(5), 380-389.
[22] Spivakovskaya, D., Heemink, A., Milstein, G., and Schoenmakers, J. (2005). 'Simulation of the transport of particles in coastal waters using forward and reverse time diffusion.' Advances in water resources, 28(9), 927-938.
[23] Spivakovskaya, D., Heemink, A., and Schoenmakers, J. (2007). 'Two-particle models for the estimation of the mean and standard deviation of concentrations in coastal waters.' Stochastic Environmental Research and Risk Assessment, 21(3), 235-251.
[24] Tsai, C. W., Man, C., and Oh, J. (2014). 'Stochastic particle based models for suspended particle movement in surface flows.' International Journal of Sediment Research, 29(2), 195-207.
[25] Vollmer, S., and Kleinhans, M. G. (2007). 'Predicting incipient motion, including the effect of turbulent pressure fluctuations in the bed.' Water Resources Research, 43(5).
[26] Walpole, R. E. (2007). Probability & statistics for engineers & scientists, Pearson Prentice Hall, Upper Saddle River, NJ.
[27] Wu, F.-C., and Chou, Y.-J. (2003). 'Rolling and lifting probabilities for sediment entrainment.' Journal of Hydraulic Engineering, 129(2), 110-119.
[28] Zwiers, F. W., and Kharin, V. V. (1998). 'Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling.' Journal of Climate, 11(9).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56290-
dc.description.abstractIt is important to develop a forecast model to predict the trajectory of sediment particles when extreme flow events occur. In extreme flow environments, the stochastic jump diffusion particle tracking model (SJD-PTM) can be used to model the movement of sediment particles in response to extreme events. This proposed SJD-PTM can be separated into three main parts — a drift motion, a turbulence term and a jump term due to random occurrences of extreme flow events. The study is intended to modify the jump term, which models the abrupt changes of particle position in the extreme flow environments. Firstly, considering the probabilistic occurrences of extreme events, both the magnitude and occurrences of extreme flow events can be simulated by the extreme value type I distribution (EVI) and the Poisson process, respectively. The evidence shows that the proposed model can more explicitly describe the uncertainty of particle movement by taking into considerations both the random arrival process of extreme flows and the variability of extreme flow magnitude. Secondly, the frequency of extreme flow occurrences might change due to many uncertain factors such as climate change. The study also attempts to use the concept of the logistic regression and the parameter of odds ratio, namely the trend magnitude to investigate the frequency change of extreme flow event occurrences and its impact on sediment particle movement. With the SJD-PTM, the ensemble mean and variance of particle trajectory can be quantified via simulations. The results show that by taking into the effect of the trend magnitude, the particle position and its uncertainty may undergo a significant increase. Such findings will have many important implications to the environmental and hydraulic engineering design and planning. For instance, when the frequency of the occurrence of flow events with higher extremity increases, particles can travel further and faster downstream. And more likely flow events with higher extremity can induce a higher degree of entrainment and particle resuspension, and consequently more significant bed and bank erosion.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:22:06Z (GMT). No. of bitstreams: 1
ntu-103-R01521317-1.pdf: 1653562 bytes, checksum: f8d7385b69b82cbb8415f8bedb98e2be (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Problem Statement 4
1.2 Research Hypotheses 5
1.3 Objectives of Study 7
1.4 Overview of Thesis 7
Chapter 2 Literature Review 8
2.1 Particle Tracking Models 9
2.1.1 Hunter et al. (1993) 9
2.1.2 Pope (1994) 11
2.1.3 Spivakovskaya et al. (2005) 12
2.1.4 Spivakovskaya et al. (2007) 13
2.2 Summary 14
Chapter 3 Stochastic Theories 16
3.1 Brownian Motion 17
3.2 Wiener Process 18
3.3 Poisson Process 19
3.4 Exponential Distribution 20
3.5 Summary 21
Chapter 4 Stochastic Particle Tracking Model using Extreme Value Generator in Jump Term 22
4.1 Introduction 23
4.2 Stochastic Jump Diffusion Particle Tracking Model 24
4.2.1 Governing Equation 24
4.2.2 Determination of Jump Terms 26
4.2.3 Extreme Value Distribution 29
4.2.4 Poisson Jump Processes 30
4.3 Applications in Open Channel Flows 33
4.3.1 Hydraulic Parameters 34
4.4 Simulation Results 37
4.4.1 Example 1: Two-Dimensional 37
4.4.2 Example 2: Open Channel Flow 40
4.4.3 Example 3: Forecast Model 43
4.5 Summary and Conclusions 47
Chapter 5 Trend Analysis of Large Flow Perturbations and Applications to Stochastic Particle Tracking Model 49
5.1 Introduction 50
5.2 Logistic Trend model 52
5.3 Analysis of Trends of Large Flow Perturbations 54
5.3.1 Case 1: Large Timescales Flow Events 54
5.3.2 Case 2: Small Timescales Flow Events 57
5.3.3 Conclusions 58
5.4 Poisson Jump Processes 59
5.5 Applications in Stochastic Jump Particle Tracking Model 62
5.6 Simulation Results 63
5.6.1 Case 1: Large Timescales Flow Events 63
5.6.2 Case 2: Small Timescales Flow Events 66
5.7 Discussions 68
5.8 Summary and Conclusions 69
Chapter 6 Summary and Recommendations 71
6.1 Summary and Conclusions 72
6.2 Recommendations for Future Research 73
REFERENCES 75
APPENDIX 78
dc.language.isoen
dc.title以隨機微分方程法探討極端事件下泥砂運動機制zh_TW
dc.titleStochastic Particle Tracking Modeling for Sediment Transport in Extreme Flow Environmentsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳富春,余化龍,賴悅仁
dc.subject.keyword隨機微分方程,序率模式,顆粒軌跡模型,泥砂運動,極端流動事件,氣候變遷,zh_TW
dc.subject.keywordstochastic differential equations,stochastic method,particle tracking model,sediment transport,extreme flow events,climate change,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2014-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved