請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56289完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭安妮 | |
| dc.contributor.author | Tai-Chen Lai | en |
| dc.contributor.author | 賴泰辰 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:22:03Z | - |
| dc.date.available | 2016-08-17 | |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-15 | |
| dc.identifier.citation | 1. Abbiss, C. P. (1981). 'Shear wave measurements of the elasticity of the
ground,' Geotechnique 31, No. 1, pp. 91-104 2. ASTM, D3999. 2010. Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus 3. ASTM, D422. 2010. Standard Test Method for Particle-Size Analysis of Soils 4. ASTM, D4253. 2010. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table 5. ASTM, D4254. 2010. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density 6. ASTM, D4318. 2010. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils 7. ASTM, D854. 2010. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer 111 8. Boulanger, R.W., Arulnathan, R., Jr, L.F.H., Ralphael A. T., and Michael W. D. (1998). 'Dynamic Properties Of Sherman Island Peat, ' Journal Of Geotechnical And Geoenvironmental Engineering :124 pp.12-20 9. Brignoli E. G. M., Gotti M. and Stokoe K. H. (1996). 'Measurement of shear waves in laboratory specimens by means of piezoelectric transducers, 'ASTM geotechnical testing journal : Vol. 19, No.4, pp.384-397 10. Chan, C. M. (2010). 'Bender Element Test in Soil Specimens: Identifying the Shear Wave Arrival Time, ' Electronic Journal of Geotechnical Engineering Vol. 15, Bund. M; pp. 1263-1276 11. Dyvik, R. and Madshus, C. (1985). 'Lab measurements of Gmax using bender elements, ' ASCE Annual Convention on Advances in the Art of Testing Soils under Cyclic Conditions, Detroit, Michigan, pp. 186-196. 12. Dobry, R., and Vucetic, M. (1987). 'State-of-the-art report: Dynamic properties and response of soft clay deposits, ' Proc. Int. Symp. on Geotechnical Engineering of Soft Soils, Vol. 2, pp.51-87. 13. Darendeli, E. B. (2001). 'Development of a New Family of Normalized Modulus Reduction and Material Damping Curves,' Dissertation of The University of Texas at Austin 112 14. Das, B.M. and Ramana, G.V. (2011) Principles of Soil Dynamics, Cengage Learning pp. 133 15. Erten, D. and Maher, M. H. (1994). 'Cyclic Undrained Behavior of Silty Sand,' Soil Dynamics and Earthquake Engineering 14 pp. 115-123 16. Fernando, J., Daavid, J. and Javer, O. (2012). 'A Procedure to Calibrate and Perform the Bender Element Test, 'Dyna, year 79, Nro. 176, pp. 10-18 17. Fonseca, A. V. d., Ferreira, C. and Fahey, M. (2009). 'A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods, 'Geotechnical Testing Journal, Vol. 32, No. 2, pp. 1-17 18. GDS manual for bender element 2005 & 2007 19. Hassanipour, A., Shafiee, A. and Jafari, M.K. (2010). 'Low-Amplitude Dynamic Properties for Compacted Sand-Clay mixtures, ' International Journal of Civil Engineering, Vol. 9, No. 4, pp. 255-264 20. Jafari, M. K., Shafiee, A. and Razmkhah, A. (2002). 'Dynamic Properties of Fine Grained Soils in South of Tehran, ' JSEE: Vol. 4, No. 1, pp. 25-35 113 21. Salinero, I. S., Roesset, J. M. and Stokoe II, K. H. (1986). 'ANALYTICAL STUDIES OF BODY WAVE PROPAGATION AND ATTENUATION, 'a report on research sponsored by United States Air Force Office of Scientific Research Boiling Air Force Base pp. 50~51 22. Jovicic, M., Coop, R. and Simic, M. (1996). 'Object Criteria for Determining Gmax from Bender Element Tests, ' Geotechnique 46, No. 2, pp. 357-362 23. JSF T26-81T, Determination of maximum relative density and minimum relative density for sand, Japanese Geotechnical Society (in Japanese) 24. Khana, Z., ElNaggar, M. H., Cascante, G. (2010). 'Frequency Dependent Dynamic Properties from Resonant Column and Cyclic Triaxial Tests, ' Journal of the Franklin Institute 348, pp. 1363–1376 25. Kokusho, T. (1980). 'Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range,' Soils and Foundations Japan Society of Soil Mechines And Foundation Engineering Vol. 20, No.2, pp. 45-60 26. Kokusho, T., Yoshida, Y. and Esashi, Y. (1982). 'Dynamic Properties of Soft Clay for Wide Strain Range,' Soils and Foundations Japan Society of Soil Mechines and Foundation Engineering Vol. 22, No.4, pp. 1-18 114 27. Lee, J. S. and Santamarina, J. C. (2005). 'Bender Elements: Performance and Signal Interpretation, ' Journal of Geotechnical and Geoenvironmental Engineering, pp. 1063-1070 28. Madhusudhan, B. N. and Kumar, J. (2013). 'Damping of Sands for Varying Saturation,' Journal of Geotechnical and Geoenvironmental Engineering 139: pp. 1625-1630 29. Schaeffer, K., Bearce, R. and Wang, J. (2013). 'Dynamic Modulus and Damping Ratio Measurements from Free-Free Resonance and Fixed-Free Resonant Column Procedures,' Journal of Geotechnical and Geoenvironmental Engineering, pp. 1943-5606 30. Schneider, J. A., Mayne, L. H. Jr., Mayne, P. W., Macari, E. J. and Rix, G. J. (1999). 'Field and Laboratory Measurements of Dynamic Shear Modulus of Piedmont Residual Soils,' Behavioral Characteristics of Residual Soils, GSP 92, ASCE, Reston, VA, pp. 12-25 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56289 | - |
| dc.description.abstract | 影響土壤的動態參數的因子有很多,如:試體密度、試體有效應力、過壓密比、
塑性…等。本研究是利用一系列動力三軸儀及剪力波原件試驗資料探討砂及砂和 粉土混合土壤的動態特性。本研究所選用的材料是石英砂及人工磨成的石英粉, 試體的配置依細料料含量的不同可分為以下三種:純砂土、5%石英粉混合土樣、 10%石英粉混合土樣。純砂土的試體配置是以乾土重模為主而混合土壤的配置方法 是使用濕搗法。所有的試驗初始是控制一定的乾密度下進行配置,接著以不同的 有效應力來進行壓密,最後再以不同的剪應變來做剪切。 根據試驗結果可以發現剪力模數會隨著剪應變的增加而降低,不過阻尼比卻 是擁有相反的趨勢,是隨著剪應變增加而下降。這個試驗結果,無論是在純砂土、 5%的混合土讓和10%的混合土壤都有一樣的趨勢。除此之外,試體的有效應力也 對動態參數也會有影響,當我們把有效應從100kPa 提升至300kPa 可以發現,正 規畫剪力摩數曲線會因有效應力的增加也有上升的趨勢,當然,阻尼比依然是相 反的趨勢,隨著應力的上升呈現下降的表現。 對於最大剪力摩數我們也有探討,細粒料的添加對於最大剪力摩數也有影響, 依剪力波原件試驗結果可以發現,細粒料的添加對於最大剪力摩數有降低的趨勢, 當然,試體有效應力上升會使得最大剪力摩數也有上升的表現。 本研究著重點著重於三個主要的影響因子,分別是:有效應力、細粒料含量 還有剪應變大小。探討這些因子對於動態摩數及阻尼比有何影響,詳細的內容皆 在以下的章節做詳細的介紹。 | zh_TW |
| dc.description.abstract | There are many factors affecting the dynamic soil properties, including soil density,
confining pressure, over-consolidation ratio, plasticity, mineralogy, and particle shape, etc. This research examined the dynamic behavior of pure sand and sand-silt mixture by a series of strain-controlled cyclic triaxial and bender element tests. Materials used in this study were pure quartz sand and sand with various percentages of quartz silt (5% and 10%). All tests were carried out under the same initial dry density. Effects of initial effective confining stress and strain amplitude are considered. From the test results, shear modulus of the mixed soil decreases as shear strain increases. However, damping ratio increases with increasing shear strain amplitude. This trend is consistent with past research on pure sand or pure clay materials. . In addition, when the initial effective confining stress increases from 100kPa to 300kPa, the mixed soil would have a higher shear modulus and become more linear (i.e. less modulus reduction and less damping). Lastly, increasing fines content would lower the shear modulus and increase the damping ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:22:03Z (GMT). No. of bitstreams: 1 ntu-103-R01521120-1.pdf: 11747229 bytes, checksum: 6c7acc2b589b43522c132fbdc36eae3c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 論文口試委員審定書 ............................................................................................... I
致謝 ......................................................................................................................... II 摘要 ........................................................................................................................ III Abstract ................................................................................................................. IV Table of Contents .................................................................................................... V List of Figures .................................................................................................... VIII List of Tables ...................................................................................................... XIII Introduction .................................................................................... 1 1.1 Motivation and Purpose ........................................................................ 1 1.2 Research Method .................................................................................. 1 1.3 Research Framework ............................................................................ 2 Literature Review ........................................................................... 4 2.1 Definition of shear modulus and damping ratio ................................... 4 2.2 Effect of void ratio on dynamic properties ........................................... 6 2.3 Effect of confining pressure on dynamic soil properties ...................... 6 2.4 Effect of plasticity on dynamic properties ............................................ 7 2.5 Effect of fines content on dynamic properties ...................................... 8 2.6 Effect of drainage condition on dynamic properties .......................... 10 2.7 Other studies based on dynamic triaxial apparatus ............................ 10 2.8 Previous studies based on bender element apparatus .......................... 11 Experimental Program ................................................................. 33 3.1 Testing material .................................................................................. 33 3.2 Testing apparatus ................................................................................ 33 3.2.1 C.K.C. Dynamic Triaxial Apparatus ........................................... 34 3.2.2 Bender Element Device .............................................................. 36 3.3 Testing Procedure ............................................................................... 37 V 3.3.1 Instrument Calibration ................................................................ 37 3.3.2 Specimen Preparing and Remolding .......................................... 37 3.3.3 Specimen Saturation ................................................................... 39 3.3.4 Specimen Consolidation ............................................................. 41 3.3.5 Cyclic Loading Test .................................................................... 41 3.3.6 Testing Data ................................................................................ 41 Test Results and Analyses ............................................................ 55 4.1 Basic soil properties ........................................................................... 55 4.1.1 Size of soil diameter ................................................................... 55 4.1.2 Specific Gravity and Relative Density ....................................... 56 4.1.3 Atterberg Limits ......................................................................... 57 4.1.4 Direct Shear Tests ....................................................................... 57 4.2 Results of Strain-Controlled Cyclic Triaxial Tests ............................. 58 4.2.1 Determination of Shear Modulus and Damping ......................... 58 4.2.2 Strain Rate and Loading Frequency ........................................... 59 4.2.3 Experimental results for pure sand ............................................. 59 4.2.4 Experimental results for mixed soil with 5% fines .................... 60 4.2.5 Experiment result for mixed soil with 10% fines ....................... 61 4.3 Results from bender element tests ...................................................... 61 4.3.1 Effect of Top Cap Direction ....................................................... 62 4.3.2 Determination of the first arrival time ........................................ 62 4.3.3 Bender element tests results for pure sand and mixture with 5% fines content .................................................................................................... 62 4.4 Data Analysis of Gmax ......................................................................... 63 4.4.1 Calculation of Shear Wave velocity ........................................... 63 4.4.2 Determination of Maximum Shear Modulus (Gmax) ................... 64 4.5 Compilation and comparison of data from cyclic triaxial tests and bender element tests ............................................................................................... 64 4.5.1 Normalized shear modulus curve ............................................... 65 4.5.2 Damping ratio curve ................................................................... 65 4.5.3 Effect of Effective Confining Stress ........................................... 66 4.5.4 Effect of Fines Content ............................................................... 67 VI 4.5.5 Effect of Number of Cycles ........................................................ 67 4.5.6 The Trend of Maximum Shear Modulus (Gmax) ......................... 67 Conclusion and Recommendation ............................................. 109 5.1 Conclusion ........................................................................................ 109 5.2 Recommendation for future research ................................................ 110 References ............................................................................................................. 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 剪力摩數 | zh_TW |
| dc.subject | 阻尼比 | zh_TW |
| dc.subject | 動力三軸試驗 | zh_TW |
| dc.subject | 剪力波原件 | zh_TW |
| dc.subject | 最大剪力摩數 | zh_TW |
| dc.subject | dynamic property | en |
| dc.subject | cyclic triaxial test | en |
| dc.subject | bender element test | en |
| dc.subject | damping ratio | en |
| dc.subject | shear modulus | en |
| dc.title | 中至高剪應變下混合土壤的動態參數 | zh_TW |
| dc.title | Medium to Large-Strain Dynamic Property of Mixed Soils | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葛宇甯,翁作新 | |
| dc.subject.keyword | 剪力摩數,阻尼比,動力三軸試驗,剪力波原件,最大剪力摩數, | zh_TW |
| dc.subject.keyword | shear modulus,damping ratio,dynamic property,cyclic triaxial test,bender element test, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 11.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
