請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉佩玲 | |
| dc.contributor.author | Szu-Yu Chen | en |
| dc.contributor.author | 陳思妤 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:21:04Z | - |
| dc.date.available | 2015-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-15 | |
| dc.identifier.citation | Rodenbeck, et al. (2006). 'A review of sleep EEG patterns.Part I: A compilation of amended rules for their visual recognition according to Rechtschaffen and Kales.' Somnologie 10(4): 159-175.
AC. Da Rosa, et al. (1991). 'model-based detector of vertex waves and K complexes in sleep electroencephalogram.' Electroencephalogr.Clin. Neurophysiol 78(1): 71-79. Aykut Erdamar, et al. (2011). 'A wavelet and teager energy operator based method for automatic detection of K-Complex in sleep EEG.' Expert Systems with Applications 39: 1284-1290. BH., J. (1990). 'Artificial neural nets for K-complex detection.' IEEE Eng Med Biol Mag 9(3): 50-52. BREMER, G., et al. (1970). 'Automatic Detection of the K-Complex in Sleep Electroencephalograms.' Biomedical Engineering, IEEE BME-17(4): 314-323. DAVIS, P. A. (1939). 'Effects of acoustic stimuli on the waking human brain.' Neurophysiology 2(6): 494-499. DEVUYST, S. The DREAMS Databases. http://www.tcts.fpms.ac.be/~devuyst/. The DREAMS K-complexes Database. Johnson, L. C. and W. E. Karpan (1968). 'AUTONOMIC CORRELATES OF THE SPONTANEOUS K-COMPLEX.' Psychophysiology 4(4): 444-452. H. DAVIS, et al. (1939). 'ELECTRICAL REACTIONS OF THE HUMAN BRAIN TO AUDITORY STIMULATION DURING SLEEP ' Neurophysiol 2: 514. Hala’sz, P. t. (2005). 'K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment.' Sleep Medicine Reviews 9(5): 391-412. Laverne Johnson and W. E. Karpan (1968). 'AUTONOMIC CORRELATES OF THE SPONTANEOUS K-COMPLEX.' Psychophysiology 4(4): 444–452. Kales, A. and a. J. D. Kales (1974). MARTIN ROTH, M. D., et al. (1956). 'THE FORM, VOLTAGE DISTRIBUTION AND PHYSIOLOGICAL SIGNIFICANCE OF THE K.COMPLEX.' Electroencephalography and Clinical Neurophysiology 8(3): 385-402. MICHAEL, A., et al. (2012). 'Sleep disturbance is associated with cardiovascular and metabolic disorders.' Journal of Sleep Research 21(4): 427-433. Omar, M., et al. (2013). 'Sleep Disorders and the Development of Insulin Resistance and Obesity ' Endocrinology and Metabolism Clinics of North America 42(3): 617-634. Pooja, B., et al. (2011). 'Associations Between Sleep Disorders, Sleep Duration, Quality of Sleep, and Hypertension: Results From the National Health and Nutrition Examination Survey, 2005 to 2008.' The Journal of Clinical Hypertension 13(10): 739-743. Rechtschaen, A. and A. Kales (1968). 'manual of standardized terminology, techniques and scoring system for sleep stages of human subjects.' S. Devuyst, et al. (2010). Automatic K-complexes Detection in Sleep EEG Recordings using Likelihood Thresholds. Annual International Conference of the IEEE. Woertz, M., et al. (2004). 'AUTOMATIC K-COMPLEX DETECTION: COMPARISON OF TWO DIFFERENT APPROACHES.' European Sleep Research Society JSR(13): 808. Zui-Tu, R. (2013). Identification of Wake and NREM-3 Stages Using Energy Distributions of Sleep EEG. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56264 | - |
| dc.description.abstract | 本研究之目的為發展睡眠第二期(N2)中特徵K複合波(K-Complex, KC)之自動辨識方法。本研究係依據最新AASM規則,以匹配追蹤演算法(Matching Pursuit, MP)及條件篩選的技術來辨識KC特徵。相較以往的研究使用繁複的數學運算來辨識KC,本研究所發展之方法係採用圖形判讀,因此更能模擬睡眠技師人眼判讀的方式。
匹配追蹤演算法係將訊號以基底展開的演算法,其特點是能自行定義基底,與訊號越相似(即越匹配)的基底,就越早被萃取出來。本研究根據匹配追蹤演算法基底匹配之步驟,採用與KC波形相似的基底,定出訊號波形近似KC的片段。再檢查近似KC片段的時間長度、峰對峰值大小、負向與正向的振幅比、兩連續KC之時間間隔,及與背景波振幅之比值,通過篩選條件者即判讀為KC。 本研究共有兩個資料來源,其一是使用Devuyst提供於網路上的DREAMS Databases,從中選取5位受試者的睡眠資料進行分析,並將自動辨識的KC與睡眠技師判讀結果做比較。若以資料中N2頁面的分析結果作比較,本自動辨識法對睡眠專家一所標記之KC的敏感度(Sensitivity, TPR)為65%,對專家二的TPR為74%,對專家一、二共同標記之KC 的TPR 為80%;對睡眠專家一所標記之KC頁面的TPR為77%,對專家二的TPR為92%,對專家一、二共同標記之KC頁面的TPR為95%。本自動辨識法的結果大部份都較DREAMS提供的自動判讀結果良好。 本研究所採用的第二個資料來源為本研究團隊於康寧醫院所收案的9筆睡眠資料。若以資料中N2頁面的分析結果作比較,本自動辨識法對睡眠專家所標記之KC的TPR分別為94%,對睡眠專家所標記之KC頁面的TPR 為96%。整體而言,本自動辨識法之表現尚稱理想。 | zh_TW |
| dc.description.abstract | The purpose of this research is to develop an identification method of the K-Complex wave (KC) in NREM-2 stages (N2) based on AASM rules. In order to mimic the procedure of the sleep stage scoring by sleep technicians, this study uses the matching pursuit algorithm (MP) to locate the KCs in a sleep signal.
Similar to the Fourier expansion, the MP expands a signal by a set of bases. The expansion is composed of iterative matching pursuit processes. In each MP process, the correlations between the bases and the signal are computed and the basis that best matches the signal is extracted from the signal. Then the MP process is conducted repeatedly to find the signal segments that possess KC-like waveforms. That simulates the KC pattern recognition by sleep experts. After the KC candidates are obtained, several criteria are applied to screen the candidates, including the duration, peak-to-peak voltage, ratio of negative to positive amplitude, the interval between continuous KC, and the ratio of peak-to-peak voltage to the average of background voltage. Candidates that pass all criteria are considered KC in the signal. This study uses two different data sources. The first one is the DREAMS Databases provided by Devuyst on the website. The sleep signals for 5 subjected were taken from the database. The proposed method was applied to detect KC in these signals and the results were compared those by manual scoring. Among all N2 epochs, the sensitivity (TPR) of the proposed method in KC detection was 65%, 74%, and 80%, respectively, compared with the KC marked by expert 1, expert 2, and the intersection of experts 1 and 2. In the detection of epochs with KC, the sensitivity of the proposed method was 77%, 92%, and 95%, respectively, compared with results by expert 1,expert 2, and the intersection of experts 1 and 2. In general, the performance of the proposed method surpasses the DREAMS automatic detection algorithm. The second data set was collected from the Kang-Ning General Hospital, constituting of sleep signals of 9 healthy subjects. Among all N2 epochs, the TPR of the proposed method in the detection of KC and epochs with KC was 94% and 96%, respectively. Nevertheless, the overall performance of the proposed method is satisfactory, especially in the detection of epochs with KC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:21:04Z (GMT). No. of bitstreams: 1 ntu-103-R01543049-1.pdf: 2753753 bytes, checksum: 5e3bb178c5b37921ddfddc3f77bdafcf (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
致謝.............................................................................................................................................................. I 中文摘要.....................................................................................................................................................II ABSTRACT............................................................................................................................................. III 目錄.............................................................................................................................................................V 圖目錄.................................................................................................................................................... VIII 表目錄.........................................................................................................................................................X 第一章 緒論...........................................................................................................................................1 1.1 研究動機...................................................................................................................................1 1.2 文獻回顧...................................................................................................................................1 1.3 論文架構...................................................................................................................................2 第二章 腦波與睡眠階段.......................................................................................................................4 2.1 腦波簡介...................................................................................................................................4 2.1.1 腦波的產生..........................................................................................................................5 2.1.2 腦波電極紀錄......................................................................................................................5 2.1.3 腦電圖分類..........................................................................................................................7 2.2 睡眠階段介紹...........................................................................................................................9 2.2.1 睡眠結構..............................................................................................................................9 2.2.2 睡眠階段判讀規則............................................................................................................ 11 2.2.3 睡眠第二期與K複合波介紹.............................................................................................12 2.2.4 人工判讀流程....................................................................................................................13 2.3 睡眠資料擷取.........................................................................................................................14 vi 2.3.1 睡眠檢查............................................................................................................................15 2.3.2 腦波量測............................................................................................................................16 2.3.3 網路DREAMS Database資料介紹....................................................................................18 第三章 匹配追蹤演算法.....................................................................................................................29 3.1 信號的基本表示及演算法的引出.........................................................................................29 3.2 匹配追蹤演算法.....................................................................................................................30 3.2.1 匹配追蹤演算法流程........................................................................................................30 第四章 睡眠階段自動判讀方法.........................................................................................................33 4.1 訊號分析流程.........................................................................................................................34 4.2 訊號前處理.............................................................................................................................35 4.3 睡眠第二期K複合波特徵擷取..............................................................................................35 4.3.1 Matching Pursuit.................................................................................................................36 4.3.2 Screening ............................................................................................................................38 第五章 分析結果與討論.....................................................................................................................47 5.1 結果比對系統與準確率分析工具.........................................................................................47 5.2 DREAMS DATABASE結果分析與討論...................................................................................49 5.2.1 Parameters Used in Detection.............................................................................................49 5.2.2 Influence of Base Set..........................................................................................................50 5.2.3 Change of Background Amplitude Criteria ........................................................................53 5.3 康寧醫院睡眠資料結果分析與討論.....................................................................................55 第六章 結論與未來展望.....................................................................................................................81 6.1 結論.........................................................................................................................................81 6.2 未來展望.................................................................................................................................82 vii 第七章 參考文獻(REFERENCE)......................................................................................................84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 睡眠腦波 | zh_TW |
| dc.subject | K複合波 | zh_TW |
| dc.subject | 自動判讀 | zh_TW |
| dc.subject | 睡眠第二期 | zh_TW |
| dc.subject | 匹配追蹤演算法 | zh_TW |
| dc.subject | Sleep EEG | en |
| dc.subject | K-Complex | en |
| dc.subject | Automatic Identification | en |
| dc.subject | NREM N2 | en |
| dc.subject | Matching Pursuit Algorithm | en |
| dc.title | 應用匹配追蹤演算法於睡眠第二期K-複合波之自動偵測 | zh_TW |
| dc.title | Automatic Detection of the K-Complex Using Matching Pursuit Algorithmfor NREM-2 Stage Scoring | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 江秉穎 | |
| dc.contributor.oralexamcommittee | 梅興 | |
| dc.subject.keyword | 睡眠腦波,K複合波,自動判讀,睡眠第二期,匹配追蹤演算法, | zh_TW |
| dc.subject.keyword | Sleep EEG,K-Complex,Automatic Identification,NREM N2,Matching Pursuit Algorithm, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
