Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56252Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 江伯倫(Bor-Luen Chiang) | |
| dc.contributor.author | Chih-Chieh Yang | en |
| dc.contributor.author | 楊智傑 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:20:36Z | - |
| dc.date.available | 2018-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-15 | |
| dc.identifier.citation | 1. Hardy, R.R. and K. Hayakawa, B cell development pathways. Annual Review of Immunology, 2001. 19: p. 595-621.
2. Pieper, K., B. Grimbacher, and H. Eibel, B cell biology and development. Journal of Allergy and Clinical Immunology, 2013. 131(4): p. 959-971. 3. Kantor, A.B. and L.A. Herzenberg, Origin of murine B cell lineages. Annual Review of Immunology, 1993. 11: p. 501-538. 4. LeBien, T.W. and T.F. Tedder, B lymphocytes: how they develop and function. Blood, 2008. 112(5): p. 1570-1580. 5. Lanzavecchia, A., Antigen-specific interaction between T cells and B cells. Nature, 1985. 314(6011): p. 537-539. 6. Bouaziz, J.D., et al., Therapeutic B cell depletion impairs adaptive and autoreactive CD4+ T cell activation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(52): p. 20878-20883. 7. Harris, D.P., et al., Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunology, 2000. 1(6): p. 475-482. 8. Reichardt, P., et al., Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood, 2007. 110(5): p. 1519-1529. 9. Robey, E. and B.J. Fowlkes, Selective events in T cell development. Annual 38 Review of Immunology, 1994. 12: p. 675-705. 10. Scollay, R., T cell subset relationships in thymocyte development. Current Opinion in Immunology, 1991. 3(2): p. 204-209. 11. Lew, A.M., et al., Characterization of T cell receptor gamma chain expression in a subset of murine thymocytes. Science, 1986. 234(4782): p. 1401-5. 12. Holtmeier, W. and D. Kabelitz, Gammadelta T cells link innate and adaptive immune responses. Chemical Immunology and Allergy, 2005. 86: p. 151-83. 13. Nijkamp, F.P., M.J. Parnham, and SpringerLink (Online service), Principles of Immunopharmacology. 2011, Birkhauser Basel: Basel. p. xxxi, 728 p. 14. Harrington, L.E., et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunology, 2005. 6(11): p. 1123-1132. 15. Veldhoen, M., et al., Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunology, 2008. 9(12): p. 1341-1346. 16. Mosmann, T.R., et al., Pillars article: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. Journal of Immunology, 2005. 175(1): p. 5-14. 17. Weiner, H.L., et al., Induction and characterization of TGF-beta secreting Th3 39 cells. FASEB Journal, 1996. 10(6): p. 2558-2558. 18. Suzuki, Y., et al., Interferon-gamma - the major mediator of resistance against Toxoplasma gondii. Science, 1988. 240(4851): p. 516-518. 19. Paul,W.E. and R.A. Seder, Lymphocyte responses and cytokines. Cell, 1994. 76(2): p. 241-251. 20. Shevach, E.M. and G.L. Stephens, The GITR-GITRL interaction: co-stimulation or contrasuppression of regulatory activity? Nature Reviews Immunology, 2006. 6(8): p. 613-618. 21. Mills, K.H.G., Regulatory T cells: Friend or foe in immunity to infection? Nature Reviews Immunology, 2004. 4(11): p. 841-855. 22. Takahashi, T., et al., Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. Journal of Experimental Medicine, 2000. 192(2): p. 303-309. 23. Shimizu, J., et al., Stimulation of CD25+CD4+regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology, 2002. 3(2): p. 135-142. 24. Gotsman, I., et al., Impaired regulatory T cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation, 2006. 114(19): p. 2047-2055. 40 25. Vignali, D.A.A., L.W. Collison, and C.J. Workman, How regulatory T cells work. Nature Reviews Immunology, 2008. 8(7): p. 523-532. 26. O'Shea, J.J. and W.E. Paul, Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science, 2010. 327(5969): p. 1098-1102. 27. Weaver, C.T., et al., Th17: An effector CD4 T cell lineage with regulatory T cell ties. Immunity, 2006. 24(6): p. 677-688. 28. Battaglia, M., et al., Tr1 cells: From discovery to their clinical application. Seminars in Immunology, 2006. 18(2): p. 120-127. 29. Weiner, H.L., Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunological Reviews, 2001. 182: p. 207-214. 30. Barrat, F.J., et al., In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. Journal of Experimental Medicine, 2002. 195(5): p. 603-616. 31. Mosmann, T.R. and R.L. Coffman, Th1 cell and Th2 cell - different patterns of lymphokine secretion lead to different functional properties. Annual Review of Immunology, 1989. 7: p. 145-173. 32. Moore, K.W., et al., Homology of cytokine synthesis inhibitory factor (IL-10) to 41 the Epstein-Barr virus Gene bcrfi. Science, 1990. 248(4960): p. 1230-1234. 33. Groux, H., et al., A CD4+ T cell subset inhibits antigen-specific T cell responses and prevents colitis. Nature, 1997. 389(6652): p. 737-742. 34. Maynard, C.L., et al., Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nature Immunology, 2007. 8(9): p. 931-41. 35. Strauss, L., et al., The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clinical Cancer Research, 2007. 13(21): p. 6301-11. 36. Roncarolo, M.G., et al., Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunological Reviews, 2006. 212: p. 28-50. 37. Bacchetta, R., et al., Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. European Journal of Immunology, 2002. 32(8): p. 2237-2245. 38. Levings, A.K. and M.G. Roncarolo, CD4+CD25+ regulatory T cells: origin, function and therapeutic potential. 2005, Springer, p. 303-326. 39. Bacchetta, R., et al., High levels of interleukin-10 production in vivo are associated with tolerance in scid patients transplanted with HLA mismatched 42 hematopoietic stem cells. Journal of Experimental Medicine, 1994. 179(2): p. 493-502. 40. Levings, M.K., et al., Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood, 2005. 105(3): p. 1162-1169. 41. Ashwell, J.D., Are B lymphocytes the principal antigen presenting cells in vivo? Journal of Immunology, 1988. 140(11): p. 3697-3700. 42. Lassila, O., O. Vainio, and P. Matzinger, Can B cells turn on virgin T cells. Nature, 1988. 334(6179): p. 253-255. 43. Eynon, E.E. and D.C. Parker, Small B cells as antigen presenting cells in the induction of tolerance to soluble protein antigens. Journal of Experimental Medicine, 1992. 175(1): p. 131-138. 44. Raimondi, G., et al., Induction of peripheral T cell tolerance by antigen-presenting B cells. I. Relevance of antigen presentation persistence. Journal of Immunology, 2006. 176(7): p. 4012-4020. 45. Chen, X. and P.E. Jensen, Cutting edge: primary B lymphocytes preferentially expand allogeneic FoxP3+ CD4 T cells. Journal of Immunology, 2007. 179(4): p. 2046-50. 46. Chu, K.H. and B.L. Chiang, Regulatory T cells induced by mucosal B cells 43 alleviate allergic airway hypersensitivity. American Journal of Respiratory Cell and Molecular Biology, 2012. 46(5): p. 651-659. 47. Varki, A., Essentials of glycobiology. 1999, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. xvii, 653 p. 48. Rabinovich, G.A. and M.A. Toscano, Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nature Reviews Immunology, 2009. 9(5): p. 338-352. 49. Yang, R.Y., G.A. Rabinovich, and F.T. Liu, Galectins: structure, function and therapeutic potential. Expert Reviews in Molecular Medicine, 2008. 10: p. e17. 50. Kubach, J., et al., Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood, 2007. 110(5): p. 1550-8. 51. Demetriou, M., et al., Negative regulation of T cell activation and autoimmunity by Mgat5 N-glycosylation. Nature, 2001. 409(6821): p. 733-9. 52. Liu, S.D., et al., Endogenous galectin-1 enforces class I-restricted TCR functional fate decisions in thymocytes. Blood, 2008. 112(1): p. 120-30. 53. Brewer, C.F., M.C. Miceli, and L.G. Baum, Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Current Opinion in Structural Biology, 2002. 12(5): p. 616-623. 44 54. Pace, K.E., et al., Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. Journal of Immunology, 1999. 163(7): p. 3801-3811. 55. Loser, K., et al., Galectin-2 suppresses contact allergy by inducing apoptosis in activated CD8+ T cells. Journal of Immunology, 2009. 182(9): p. 5419-5429. 56. Paclik, D., et al., Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. Journal of Molecular Medicine, 2008. 86(12): p. 1395-406. 57. Sturm, A., et al., Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. Journal of Immunology, 2004. 173(6): p. 3825-37. 58. Seki, M., et al., Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clinical Immunology, 2008. 127(1): p. 78-88. 59. Juszczynski, P., et al., The AP1-dependent secretion of galectin-1 by Reed - Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(32): p. 13134-13139. 60. Toscano, M.A., et al., Galectin-1 suppresses autoimmune retinal disease by 45 promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. Journal of Immunology, 2006. 176(10): p. 6323-6332. 61. Jiang, H.R., et al., Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. Journal of Immunology, 2009. 182(2): p. 1167-1173. 62. Garin, M.I., et al., Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood, 2007. 109(5): p. 2058-2065. 63. Levi, G. and V.I. Teichberg, Isolation and physicochemical characterization of electrolectin, a beta-D-galactoside binding lectin from the electric organ of Electrophorus electricus. Journal of Biological Chemistry, 1981. 256(11): p. 5735-40. 64. Hsu, D.K., H.Y. Chen, and F.T. Liu, Galectin-3 regulates T-cell functions. Immunological Reviews, 2009. 230: p. 114-127. 65. Kruisbeek, A.M., E. Shevach, and A.M. Thornton, Proliferative assays for T cell function. Current Protocols in Immunology, 2004. Chapter 3: p. Unit 3 12. 66. Hsu, L.-H., Study on the effect of B1 and B2 cell subsets on induction of T cells with regulatory function, in Graduate Institute of Immunology. 2011, National Taiwan University. p. 86. 67. Suri-Payer, E., et al., CD4+CD25+ T cells inhibit both the induction and 46 effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. Journal of Immunology, 1998. 160(3): p. 1212-1218. 68. Sakaguchi, S., et al., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology, 1995. 155(3): p. 1151-64. 69. Moremen, K.W., M. Tiemeyer, and A.V. Nairn, Vertebrate protein glycosylation: diversity, synthesis and function. Nature Reviews Molecular Cell Biology, 2012. 13(7): p. 448-462. 70. Thomsen, M.K., G.H. Hansen, and E.M. Danielsen, Galectin-2 at the enterocyte brush border of the small intestine. Molecular Membrane Biology, 2009. 26(5-7): p. 347-355. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56252 | - |
| dc.description.abstract | Treg細胞有抑制免疫反應的功能,在免疫系統中扮演重要角色。過去研究指出,當CD4+ T細胞受到細胞激素刺激時,可以轉變為CD4+ CD25+ T細胞,並且有免疫抑制功能,稱作為iTreg細胞。最近我們的研究發現,以B2細胞作為抗原呈獻細胞可以誘導CD4+ T細胞成為類似Treg的細胞,我們稱之為Treg-of-B2細胞,而對於Treg-of-B2細胞的免疫抑制機轉目前並不清楚。動物凝集素家族中的半乳糖凝集素是最近免疫研究上一個重要的議題,目前發現了15種的半乳糖凝集素,但大部分的功能並不清楚。半乳糖凝集素在免疫細胞中參與了許多反應,例如半乳糖凝集素-2可以誘發CD8+ T細胞的細胞凋亡,但是半乳糖凝集素-3反而是抑制細胞凋亡的發生。本研究探討半乳糖凝集素在Treg-of-B2細胞的免疫抑制中的影響,首先收集活化的Treg-of-B2細胞,分析半乳糖凝集素的RNA表現,結果發現半乳糖凝集素-2有高量的表現,並且同時也可以在細胞培養液中測到半乳糖凝集素-2的表現。本次研究也同時分析Tr1細胞的半乳糖凝集素RNA表現,但並沒有任何表現。接著發現Treg-of-B2細胞執行免疫抑制功能時,不一定需要細胞接觸,在加入乳糖阻礙半乳糖凝集素作用,發現Treg-of-B2細胞的免疫抑制功能有顯著的下降。CD4+ T細胞的增生實驗中加入半乳糖凝集素-2發現半乳糖凝集素-2可抑制CD4+ T細胞的增生,因此透過本次研究可知半乳糖凝集素-2參與在Treg-of-B2細胞的免疫抑制功能中。 | zh_TW |
| dc.description.abstract | Regulatory T cells (Treg cells) have an ability to suppress immune response. Under particular condition, naive CD4+ T cell could differentiate into inducible Treg (iTreg) cells with regulatory functions. In the past few years, some in vitro experiments have shown that splenic B220+ B2 cells could convert naive CD4+ T cells into induced Treg cells (referred to as Treg-of-B2 cells). Treg-of-B2 cells had immune suppressive ability like nTreg cells, but the mechanism remained unclear. To date, 15 galectins have been identified in mammals, only galectin-1, -2, -3, -4, -7, -8, -9, -12 identified in mice. Recent studies have shown that several galectins (including galectin-1, -2, -3, -7, -8, -9, and -12) induced apoptosis in T cell. Galectin-1 was a key effector molecule in the regulation function of CD4+CD25+ T cells. Galectin-2 induced activated CD8+ T cells apoptosis. Galectin-3 exerted several functions such as inhibition of apoptosis, promotion of cell growth, and regulation of TCR signaling. The aim of our study was to investigate the relationship between galectins and the regulatory function of Treg-of-B cells. First, expression profile of galectins in activated Treg-of-B2 cells and activated Tr1 cells had been screened. We found that activated Treg-of-B2 cells had higher galectin-2 expression but Tr1 cells did not. Second, the suppressive function of Treg-of-B2 cells did not need cell-cell contact. By adding lactose and transwell system in suppressive assay, we found that galectin-2 might be a factor in the function of Treg-of-B2 cells. We confirmed the role of galectin-2 in the proliferation of CD4+ CD25- T cells by adding recombinant galectin-2 in culture medium and we found that the proliferation of CD4+ CD25- T cells was decreased. Our finding clarify that a part of suppressive ability of Treg-of-B2 cells was galectin-2 secretion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:20:36Z (GMT). No. of bitstreams: 1 ntu-103-R01449013-1.pdf: 1308408 bytes, checksum: ff1533322bc6838afef3e1d86607b11b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 第一章 緒論 ................................................................................... 1
第一節 背景 .................................................................................. 2 1. B2細胞(B2 cell)......................................................................... 2 2. T細胞(T cell)........................................................................... 3 3. 調節性T細胞(Regulatory T cell, Treg)..................................................... 4 4. 誘發性調節性T細胞(Induced regulatory T cell, iTreg)....................................... 5 5. 第ㄧ型調節性T細胞(Type 1 regulatory T cell, Tr1).......................................... 5 6. Treg-of-B2細胞 .......................................................................... 6 7. 半乳糖凝集素(Galectins).................................................................. 6 8. 半乳糖凝集素與調節性T細胞 ................................................................... 8 第二節 研究動機與目的 .......................................................................... 9 第二章 實驗方法及材料 ........................................................................... 10 第一節 初代細胞之收集 ...........................................................................11 第二節 Treg-of-B2細胞培養.......................................................................11 第三節 第一型調節性T細胞培養..................................................................... 12 第四節 細胞分析 ............................................................................... 12 第五節 免疫抑制試驗 ............................................................................ 12 第六節 乳糖中和試驗 ............................................................................ 13 第七節 RNA萃取................................................................................ 13 第八節 逆轉錄聚合酶鏈鎖反應 ...................................................................... 14 第九節 定量即時聚合酶鏈鎖反應 ..................................................................... 14 第十節 西方墨點法 .............................................................................. 14 1. 蛋白質萃取................................................................................. 14 2. 蛋白質濃度測定.............................................................................. 15 3. 膠體電泳................................................................................... 15 4. 轉印...................................................................................... 15 5. 底片呈色................................................................................... 15 第十一節 Transwell系統.......................................................................... 16 第十二節 統計分析 ............................................................................... 16 第十三節 實驗相關材料 ............................................................................ 16 1. 細胞培養液及緩衝液........................................................................... 16 2. BD IMagTM system.......................................................................... 17 3. Mitogens、單株抗體及細胞激素.................................................................. 17 4. 細胞分析.................................................................................... 18 5. 免疫抑制試驗................................................................................. 19 6. RNA 萃取.................................................................................... 19 7. 逆轉錄聚合酶鏈鎖反應........................................................................... 19 8. 定量即時聚合酶鏈鎖反應......................................................................... 20 9. Cell lysis ................................................................................ 21 10. 西方墨點法.................................................................................. 21 11. Transwell系統.............................................................................. 22 第三章 結果 ...................................................................................... 23 第一節 使用流式細胞儀分析BD IMagTM system分選出的脾臟免疫細胞........................................... 24 第二節 使用流式細胞儀分析Treg-of-B2細胞與第一型調節性T細胞的細胞標記....................................... 24 第三節 測試Treg-of-B2細胞與第一型調節性T細胞的免疫抑制功能............................................... 25 第四節 測量活化的Treg-of-B2細胞、第一型調節性T細胞與自然調節性T細胞的半乳糖凝集素基因表現...................... 25 第五節 以西方墨點法偵測細胞培養液中的半乳糖凝集素-2...................................................... 26 第六節 將乳糖加入Treg-of-B2細胞抑制CD4+ CD25- T細胞的實驗............................................. 27 第七節以transwell系統瞭解Treg-of-B2細胞對於CD4+ CD25- T細胞的免疫抑制機轉............................... 27 第八節 將半乳糖凝集素-2加入CD4+ CD25- T細胞的增生實驗.................................................. 28 第九節 將乳糖加入Treg-of-B2細胞抑制CD8+ T細胞的實驗................................................... 28 第十節 以transwell系統瞭解Treg-of-B2細胞對於CD8+ T細胞的免疫抑制機轉.................................... 29 第十一節 將半乳糖凝集素-2加入CD8+ T細胞的增生實驗....................................................... 30 第四章 討論 ....................................................................................... 31 第五章 參考文獻 .................................................................................... 36 圖目錄 圖 一、使用流式細胞儀分析由BD IMagTM system分選出的脾臟免疫細胞........................................... 48 圖 二、使用流式細胞儀分析Treg-of-B2細胞與第一型調節性T細胞的細胞標記........................................ 49 圖 三、測試Treg-of-B2細胞與第一型調節性T細胞的免疫抑制功能................................................ 51 圖 四、測量活化細胞的半乳糖凝集素基因表現 ............................................................... 52 圖 五、以西方墨點法偵測細胞培養液中的半乳糖凝集素-2....................................................... 53 圖 六、將乳糖加入Treg-of-B2細胞抑制CD4+ CD25- T細胞的實驗............................................... 54 圖 七、以transwell系統瞭解Treg-of-B2細胞對於CD4+ CD25- T細胞的免疫抑制機轉............................... 56 圖 八、將半乳糖凝集素-2加入CD4+ CD25- T細胞的增生實驗................................................... 57 圖 九、將乳糖加入Treg-of-B2細胞抑制CD8+ T細胞的實驗.................................................... 58 圖 十、以transwell系統瞭解Treg-of-B2細胞對於CD8+ T細胞的免疫抑制機轉 .................................... 60 圖 十一、將半乳糖凝集素-2加入CD8+ T細胞的增生實驗........................................................ 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 調節性T細胞 | zh_TW |
| dc.subject | 半乳糖凝集素-2 | zh_TW |
| dc.subject | Treg-of-B2細胞 | zh_TW |
| dc.subject | Treg-of-B2 cell | en |
| dc.subject | galectin-2 | en |
| dc.subject | Treg cell | en |
| dc.subject | regulatory T cell | en |
| dc.title | 研究Galectins在Treg-of-B2細胞的調控機轉上所扮演的角色 | zh_TW |
| dc.title | Study on the role of Galectins in the regulatory function of Treg-of-B2 cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 伍安怡,莊雅惠 | |
| dc.subject.keyword | 半乳糖凝集素-2,調節性T細胞,Treg-of-B2細胞, | zh_TW |
| dc.subject.keyword | galectin-2,Treg-of-B2 cell,regulatory T cell,Treg cell, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| Appears in Collections: | 免疫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 1.28 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
