請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56224完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明穗(Ming-Sui Lee) | |
| dc.contributor.author | Hao-Ming Yang | en |
| dc.contributor.author | 楊浩銘 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:19:33Z | - |
| dc.date.available | 2019-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-16 | |
| dc.identifier.citation | [1] J. K. Tsotsos, S. M. Culhane,W. Y. K.Wai, Y. Lai, N. Davis, and F. Nuflo, “Modeling visual attention via selective tuning,” Artificial Intelligence, vol. 78, no. 1-2, pp. 507-545, Oct. 1995.
[2] B. Olshausen, C. Anderson, and D. Van Essen, “A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information,” Journal of Neuroscience, vol. 13, no. 11, pp. 4700–4719, 1993. [3] U. Rutishauser, D. Walther, C. Koch, and P. Perona, “Is bottom-up attention useful for object recognition?,” IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 37-44, June 2004 [4] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding system: an overview,” IEEE Transactions on Consumer Electronics, vol. 46, no. 4, pp. 1103-1127, Nov. 2000. [5] S. Avidan and A. Shamir, “Seam carving for content-aware image resizing,” ACM Transactions on Graphics, vol. 26, no. 3, July 2007. [6] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254-1259, Nov. 1998. [7] Y.-F. Ma and H.-J. Zhang, “Contrast-based image attention analysis by using fuzzy growing,” in Proceedings of ACM International Conference on Multimedia, 2003. [8] X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, June 2007. [9] R. Achanta, F. Estrada, P. Wils, and S. S‥usstrunk, “Salient region detection and segmentation,” International Conference on Computer Vision Systems, vol. 5008, pp. 66-75, 2008. [10] Ming-Ming Cheng, Guo-Xin Zhang, Niloy J. Mitra, Xiaolei Huang, Shi-Min Hu, “Global Contrast based Salient Region detection,” IEEE Conference on Computer Vision and Pattern Recognition, pages 409-416, June 2011. [11] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image segmentation,” International Journal of Computer Vision, vol. 59, no. 2, pp. 167-181, Sep. 2004. [12] S. Goferman, L. Zelnik-Manor, A. Tal, “Context-Aware Saliency Detection,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 2376-2383, June 2010. [13] F. Perazzi, P. Krahenbuhl, Y. Pritch and A. Hornung, “Saliency filters: Contrast based filtering for salient region detection,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 733-740, June 2012. [14] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. S‥usstrunk, “Slic superpixels,” Ecole polytechnique federale de Lausanne Technical Report, no. 149300, June 2010. [15] T. Judd, K.Ehinger, F. Durand, and A. Torralba, “Learning to predict where humans look,” International Conference on Computer Vision, pp. 2106-2113, Sep. 2009. [16] E. P. Simoncelli and W. T. Freeman, “The steerable pyramid: A flexible architecture for multi-scale derivative computation,” in Proceedings of International Conference on Image Processing, vol. 3, pp. 444-447, Oct. 1995. [17] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of the spatial envelope,” International Journal of Computer Vision, vol. 42, no. 3, pp. 145-175, May 2001. [18] R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Research, vol. 39, no. 19, pp. 3157-3163, Oct. 1999. [19] L. Itti and C. Koch, “A saliency-based search mechanism for overt and covert shifts of visual attention,” Vision Research, vol. 40, no. 10-12, pp. 1489-1506, June 2000. [20] P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, May 2005 [21] Yichen Wei, Fang Wen, Wangjiang Zhu, and Jian Sun, “Geodesic saliency using background priors,” European Conference on Computer Vision, pp. 29-42, Oct. 2012 [22] C. Tomasi, R. Manduchi, “Bilateral Filtering for Gray and Color Images,” IEEE International Conference on Computer Vision, pp. 839-846, Jan. 1998 [23] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” Advances in Neural Information Processing Systems, vol. 19, pp. 545-552, 2007. [24] R. Achanta, S. Hemami, F. Estrada, and S. S‥usstrunk, “Frequency-tuned salient region detection,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597-1604, June 2009. [25] Xiaohui Shen and Ying Wu, “A unified approach to salient object detection via low rank matrix recovery,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 853-860, June 2012. [26] Xiaohui Li, Huchuan Lu, Lihe Zhang, Xiang Ruan, and Ming-Hsuan Yang, “Saliency detection via dense and sparse reconstruction,” IEEE International Conference on Computer Vision, pp.2976-2983, Dec. 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56224 | - |
| dc.description.abstract | 圖片的顯著性偵測(Saliency Detection)在電腦視覺(Computer Vision)中是一個基礎的問題,對於許多的應用像是物體分割(Object Segmentation)、自適性壓縮(Adaptive Compression)、物體辨識(Object Recognition)能有所幫助。過往的研究結果顯示出獨特性(Distinctness)在顯著性偵測中扮演著主導的因子,而這些研究則是利用各種不同的演算法去計算獨特性,如顏色、方向、樣式等低階的信息或是其他如臉部的先驗等高階信息。本篇論文設計了一個新的低階特徵來協助偵測。首先使用圖片分割(Image segmentation)將圖片切割成數個同質的區域並取出全域與局域的顏色特徵以及背景先驗。接著由水平向與垂直向的顏色差異來計算其在方向與顏色上的特殊性。此外我們建立連通元件(Connected-Component)來強調一個完整的物件。最後,經由臉部偵測加入臉部先驗的特徵,並整合這些特徵以產生偵測的結果。實驗結果顯示本論文之方法能夠找出圖片中顯著性較高的區域及物件,並且能夠保有同一物件內部擁有較完整的顯著性。 | zh_TW |
| dc.description.abstract | In computer vision, saliency detection of image is a fundamental problem, it’s helpful for applications like object segmentation, adaptive compression, and object recognition. Previous works demonstrate that distinctness is the dominating factor, and these works try to use various algorithms to compute distinctness, low-level cues like color, orientation, and pattern or high-level cues like face prior. This thesis proposed a new low-level feature to assist the detection. First, we use image segmentation to segment the image into homogeneous regions then extract global and local color features and combined with background prior. Second, the particularity of color on horizontal direction and vertical direction are calculated. In addition, we create connected-component to emphasis the completeness of an object. Finally, we obtain high-level cue of face prior by face detection and then integrate these features to generate the detected result. The experiment results show that the proposed method can find the region and object with higher saliency, and retain the completeness inside of the object. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:19:33Z (GMT). No. of bitstreams: 1 ntu-103-R01922118-1.pdf: 2973246 bytes, checksum: 0e5cbe412bc5202d8afc17340a04d684 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi Chapter 1 Introduction 1 1.1 Introduction of Saliency 1 1.2 Thesis Organization 2 Chapter 2 Related Work 3 2.1 Local Contrast Based Methods 3 2.2 Global Contrast Based Methods 5 Chapter 3 Proposed Method 10 3.1 System Overview 10 3.2 Preprocessing 11 3.3 Global and Local Color Features 13 3.4 Horizontal and Vertical Features 15 3.4.1 Horizontal and Vertical Color Differences 16 3.4.2 Create HV Map and Connected-Component 17 3.5 Integrate Features and High-level Prior 19 Chapter 4 Experimental Results 22 4.1 Resultant Images 22 4.2 Compare With Other Methods 29 4.3 Failure case 32 Chapter 5 Conclusion and Future Work 34 5.1 .Conclusion 34 5.2 Future Work and Discussion 34 REFERENCE 36 | |
| dc.language.iso | en | |
| dc.subject | 特徵整合 | zh_TW |
| dc.subject | 顏色特徵 | zh_TW |
| dc.subject | 水平與垂直特徵 | zh_TW |
| dc.subject | Integrate Features | en |
| dc.subject | Color features | en |
| dc.subject | Horizontal and Vertical features | en |
| dc.title | 利用水平與垂直方向上顏色差異實現影像顯著性偵測 | zh_TW |
| dc.title | Saliency Detection using Horizontal and Vertical Color Differences | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周承復(Cheng-Fu Chou),楊佳玲(Chia-Lin Yang) | |
| dc.subject.keyword | 顏色特徵,水平與垂直特徵,特徵整合, | zh_TW |
| dc.subject.keyword | Color features,Horizontal and Vertical features,Integrate Features, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
