Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56223
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭卜壬(Pu-Jen Cheng)
dc.contributor.authorKun-Wei Hanen
dc.contributor.author韓鯤偉zh_TW
dc.date.accessioned2021-06-16T05:19:31Z-
dc.date.available2019-08-26
dc.date.copyright2014-08-26
dc.date.issued2014
dc.date.submitted2014-08-16
dc.identifier.citation[1] N. Aizenberg, Y. Koren, and O. Somekh. Build your own music recommender by
modeling internet radio streams. In Proceedings of the 21st international conference
on World Wide Web, pages 1–10. ACM, 2012.
[2] M. A. Bartsch and G. H. Wakefield. Audio thumbnailing of popular music using
chroma-based representations. Multimedia, IEEE Transactions on, 7(1):96–104,
2005.
[3] Y. Bengio, J.-S. Senécal, et al. Quick training of probabilistic neural nets by impor-
tance sampling. In AISTATS Conference, 2003.
[4] D. Bogdanov, M. Haro, F. Fuhrmann, A. Xambó, E. Gómez, and P. Herrera. Se-
mantic audio content-based music recommendation and visualization based on user
preference examples. Information Processing & Management, 49(1):13–33, 2013.
[5] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang, and X. He. Music recommen-
dation by unified hypergraph: combining social media information and music con-
tent. In Proceedings of the international conference on Multimedia, pages 391–400.
ACM, 2010.
[6] O. Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.
19[7] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[8] P. Grosche, M. Müller, and J. Serrà. Audio content-based music retrieval. Dagstuhl
Follow-Ups, 3, 2012.
[9] N. Hariri, B. Mobasher, and R. Burke. Using social tags to infer context in hybrid
music recommendation. In Proceedings of the twelfth international workshop on
Web information and data management, pages 41–48. ACM, 2012.
[10] M. Kaminskas, F. Ricci, and M. Schedl. Location-aware music recommendation
using auto-tagging and hybrid matching. In Proceedings of the 7th ACM conference
on Recommender systems, pages 17–24. ACM, 2013.
[11] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.
[12] last.fm. http://last.fm.
[13] Y.-I. Song, J.-T. Lee, and H.-C. Rim. Word or phrase?: learning which unit to stress
for information retrieval. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 2-Volume 2, pages 1048–1056. Association for
Computational Linguistics, 2009.
[14] X. Wang, D. Rosenblum, and Y. Wang. Context-aware mobile music recommenda-
tion for daily activities. In Proceedings of the 20th ACM international conference
on Multimedia, pages 99–108. ACM, 2012.
20[15] X. Wu, Q. Liu, E. Chen, L. He, J. Lv, C. Cao, and G. Hu. Personalized next-song
recommendation in online karaokes. In Proceedings of the 7th ACM conference on
Recommender systems, pages 137–140. ACM, 2013.
[16] S. Yoshizaki, Y. Yoshitomi, C. Koro, and T. Asada. Music recommendation hybrid
system for improving recognition ability using collaborative filtering and impression
words. Artificial Life and Robotics, 18(1-2):109–116, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56223-
dc.description.abstract此篇論文中,我們提出了一種在線上音樂播放中使用的動態權重機
制。基於隱性因子模型之假設,使用者、歌曲、歌手皆是由一組隱性
空間中的向量表示。給定一使用者以及他的近期播放紀錄,即可判斷
他目前的興趣是傾向近期偏好或是長期偏好。同其他隱性因子模型,
此機制可在不使用內容資料的情形下訓練。這在使用網路播放紀錄當
做資料庫時是一個利基,因內容資料相對較難取得。在數個 last.fm 資
料集上的實驗結果顯示此方法確實有效。
關鍵字:音樂推薦,動態興趣,隱性因子向量模型,機器學習,梯度
上升
zh_TW
dc.description.abstractIn this paper, we propose a dynamic weight tuning scheme for online mu-
sic recommendation. Based on a latent factor model, songs, artists, and users
are mapped into a latent space. Then, given each user’s recent songs we can
determine his current interest for music, which either similar to his past be-
havior or more like recent ones. Like latent factor based models, this scheme
can be trained without content information, which is a benefit when adopting
internet radios as data source. Experimental results on the last.fm collections
show that our proposed method is effective.
Keywords: Music Recommendation, Dynamic Interests, Latent Factor Model,
Machine Learning, Gradient Ascent
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:19:31Z (GMT). No. of bitstreams: 1
ntu-103-R01944031-1.pdf: 612841 bytes, checksum: 8a0eac2b136b14e08dd18789454135cc (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
1 Introduction 1
2 Related Work 3
3 Proposed method 5
3.1 Latent Factor Vector Model . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Learning Latent Factor Vectors . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Dynamic Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Heuristic Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Learning Weight Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7 Postprocessing with SVM . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Experiments 12
4.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Conclusions and Future Work 18
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Bibliography 19
dc.language.isoen
dc.subject音樂推薦zh_TW
dc.subject動態興趣zh_TW
dc.subject隱性因子向量模型zh_TW
dc.subject機器學習zh_TW
dc.subject梯度上升zh_TW
dc.subjectMusic Recommendationen
dc.subjectDynamic Interestsen
dc.subjectLatent Factor Modelen
dc.subjectMachine Learningen
dc.subjectGradient Ascenten
dc.title基於使用者動態聽歌興趣之音樂推薦方法zh_TW
dc.titleMusic Recommendation based on Dynamic User Interestsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧文祥(Wen-Hsiang Lu),蔡宗翰(Tzong-Han Tsai),邱志義(Chih-Yi Chiu)
dc.subject.keyword音樂推薦,動態興趣,隱性因子向量模型,機器學習,梯度上升,zh_TW
dc.subject.keywordMusic Recommendation,Dynamic Interests,Latent Factor Model,Machine Learning,Gradient Ascent,en
dc.relation.page21
dc.rights.note有償授權
dc.date.accepted2014-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
598.48 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved