請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56206完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
| dc.contributor.author | Wen-Hao Hwang | en |
| dc.contributor.author | 黃文顥 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:18:55Z | - |
| dc.date.available | 2020-08-06 | |
| dc.date.copyright | 2020-08-06 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-27 | |
| dc.identifier.citation | [1] G. Ter Haar, 'Therapeutic ultrasound,' Eur. J. Ultrasound, vol. 9, no. 1, pp. 3-9, 1999. [2] S. H. Garmel and M. E. D'Alton, 'Diagnostic ultrasound in pregnancy: an overview,' in Seminars in Perinatology, 1994, vol. 18, no. 3, pp. 117-132. [3] J. F. Carlsen, C. Ewertsen, L. Lönn, and M. B. Nielsen, 'Strain elastography ultrasound: an overview with emphasis on breast cancer diagnosis,' Diagnostics, vol. 3, no. 1, pp. 117-125, 2013. [4] G. R. ter Haar, 'Therapeutic and surgical applications,' in Physical principles of medical ultrasonics: John Wiley Sons Chichester, UK, 2004, pp. 407-456. [5] R. Illing et al., 'The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,' Br. J. Cancer, vol. 93, no. 8, pp. 890-895, 2005. [6] W. Summer and M. K. Patrick, Ultrasonic therapy: A textbook for physiotherapists. Elsevier, 1964. [7] J. Collis et al., 'Cavitation microstreaming and stress fields created by microbubbles,' Ultrasonics, vol. 50, no. 2, pp. 273-279, 2010. [8] J. W. Busse, M. Bhandari, A. V. Kulkarni, and E. Tunks, 'The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: a meta-analysis,' CMAJ, vol. 166, no. 4, pp. 437-441, 2002. [9] K.-S. Leung, W.-S. Lee, H.-F. Tsui, P. P.-L. Liu, and W.-H. Cheung, 'Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound,' Ultrasound Med. Biol., vol. 30, no. 3, pp. 389-395, 2004. [10] A. Pilla et al., 'Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit,' J. Orthop. Trauma, vol. 4, no. 3, pp. 246-253, 1990. [11] T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, and C. C. Church, 'Ultrasound biosafety considerations for the practicing sonographer and sonologist,' 2009. [12] D.-A. Yu, J. Han, and B.-S. Kim, 'Stimulation of chondrogenic differentiation of mesenchymal stem cells,' International journal of stem cells, vol. 5, no. 1, p. 16, 2012. [13] A. I. Caplan and S. E. Haynesworth, 'Human mesenchymal stem cells,' ed: Google Patents, 1996. [14] X. Li, J. Bai, X. Ji, R. Li, Y. Xuan, and Y. Wang, 'Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation,' Int. J. Mol. Med., vol. 34, no. 3, pp. 695-704, 2014. [15] J. M. Seong, B.-C. Kim, J.-H. Park, I. K. Kwon, A. Mantalaris, and Y.-S. Hwang, 'Stem cells in bone tissue engineering,' Biomedical materials, vol. 5, no. 6, p. 062001, 2010. [16] R. Mauck, X. Yuan, and R. S. Tuan, 'Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture,' Osteoarthritis and cartilage, vol. 14, no. 2, pp. 179-189, 2006. [17] R. A. Somoza, J. F. Welter, D. Correa, and A. I. Caplan, 'Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations,' Tissue Engineering Part B: Reviews, vol. 20, no. 6, pp. 596-608, 2014. [18] C. A. L. Bassett, 'Biologic significance of piezoelectricity,' Calcif. Tissue Res., vol. 1, no. 1, pp. 252-272, 1967. [19] M. L. Hernández-Bule, C. L. Paíno, M. Á. Trillo, and A. Úbeda, 'Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells,' Cellular Physiology and Biochemistry, vol. 34, no. 5, pp. 1741-1755, 2014. [20] B. M. Isaacson and R. D. Bloebaum, 'Bone bioelectricity: what have we learned in the past 160 years?,' Journal of biomedical materials research Part A, vol. 95, no. 4, pp. 1270-1279, 2010. [21] S. M. Damaraju et al., 'Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation,' Biomaterials, vol. 149, pp. 51-62, 2017. [22] H. J. Kwon, G. S. Lee, and H. Chun, 'Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors,' Sci. Rep., vol. 6, p. 39302, 2016. [23] S. R. Park, B. H. Choi, and B.-H. Min, 'Low-intensity ultrasound (LIUS) as an innovative tool for chondrogenesis of mesenchymal stem cells (MSCs),' Organogenesis, vol. 3, no. 2, pp. 74-78, 2007. [24] G. Becerra, Z. Díaz, A. Carrión, S. Inostroza, and W. Oyonarte, 'Evaluation of mesenchymal stem cell proliferation using different low intensity pulsed ultrasound intensities,' Int. J. Morphol., vol. 30, no. 2, 2012. [25] X. Wang et al., 'Low-intensity pulsed ultrasound promotes chondrogenesis of mesenchymal stem cells via regulation of autophagy,' Stem Cell. Res. Ther., vol. 10, no. 1, p. 41, 2019. [26] S. M. Uddin et al., 'Chondro-protective effects of low intensity pulsed ultrasound,' Osteoarthritis and cartilage, vol. 24, no. 11, pp. 1989-1998, 2016. [27] M. A. Hayat, Stains and cytochemical methods. Springer Science Business Media, 1993. [28] D. Rigueur and K. M. Lyons, 'Whole-mount skeletal staining,' in Skeletal Development and Repair: Springer, 2014, pp. 113-121. [29] T. Mahmood and P.-C. Yang, 'Western blot: technique, theory, and trouble shooting,' N. Am. J. Med. Sci., vol. 4, no. 9, p. 429, 2012. [30] D. M. Miller and D. C. Shakes, 'Immunofluorescence microscopy,' Methods in cell biology, vol. 48, pp. 365-395, 1995. [31] D. Pelaez, N. Arita, and H. S. Cheung, 'Extracellular signal-regulated kinase (ERK) dictates osteogenic and/or chondrogenic lineage commitment of mesenchymal stem cells under dynamic compression,' Biochemical and biophysical research communications, vol. 417, no. 4, pp. 1286-1291, 2012. [32] L. A. McMahon, P. J. Prendergast, and V. A. Campbell, 'A comparison of the involvement of p38, ERK1/2 and PI3K in growth factor-induced chondrogenic differentiation of mesenchymal stem cells,' Biochemical and biophysical research communications, vol. 368, no. 4, pp. 990-995, 2008. [33] J. Lou, Y. Tu, S. Li, and P. R. Manske, 'Involvement of ERK in BMP-2 induced osteoblastic differentiation of mesenchymal progenitor cell line C3H10T1/2,' Biochemical and biophysical research communications, vol. 268, no. 3, pp. 757-762, 2000. [34] X. Liang et al., 'The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells,' Journal of radiation research, vol. 52, no. 3, pp. 380-386, 2011. [35] N. A. Arita, D. Pelaez, and H. S. Cheung, 'Activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) is needed for the TGFβ-induced chondrogenic and osteogenic differentiation of mesenchymal stem cells,' Biochemical and biophysical research communications, vol. 405, no. 4, pp. 564-569, 2011. [36] T. Ikeda et al., 'Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation,' Journal of bone and mineral metabolism, vol. 23, no. 5, pp. 337-340, 2005. [37] S.-S. Lin, B.-H. Tzeng, K.-R. Lee, R. J. Smith, K. P. Campbell, and C.-C. Chen, 'Cav3. 2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage,' Proceedings of the National Academy of Sciences, vol. 111, no. 19, pp. E1990-E1998, 2014. [38] V. Lefebvre and M. Dvir-Ginzberg, 'SOX9 and the many facets of its regulation in the chondrocyte lineage,' Connective tissue research, vol. 58, no. 1, pp. 2-14, 2017. [39] G. Friedl, H. Schmidt, I. Rehak, G. Kostner, K. Schauenstein, and R. Windhager, 'Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro,' Osteoarthritis and Cartilage, vol. 15, no. 11, pp. 1293-1300, 2007. [40] I. R. Veland et al., 'Inversin/Nephrocystin-2 is required for fibroblast polarity and directional cell migration,' PLoS One, vol. 8, no. 4, p. e60193, 2013. [41] Z. Anvarian, K. Mykytyn, S. Mukhopadhyay, L. B. Pedersen, and S. T. Christensen, 'Cellular signalling by primary cilia in development, organ function and disease,' Nature Reviews Nephrology, vol. 15, no. 4, pp. 199-219, 2019. [42] E. Donnelly, M. G. Ascenzi, and C. Farnum, 'Primary cilia are highly oriented with respect to collagen direction and long axis of extensor tendon,' Journal of Orthopaedic Research, vol. 28, no. 1, pp. 77-82, 2010. [43] L. Schneider et al., 'Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts,' Cellular physiology and Biochemistry, vol. 25, no. 2-3, pp. 279-292, 2010. [44] T. P. Rao and M. Kühl, 'An updated overview on Wnt signaling pathways: a prelude for more,' Circulation research, vol. 106, no. 12, pp. 1798-1806, 2010. [45] D.-C. Lie et al., 'Wnt signalling regulates adult hippocampal neurogenesis,' Nature, vol. 437, no. 7063, pp. 1370-1375, 2005. [46] E. R. Andersson et al., 'Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells,' Proceedings of the National Academy of Sciences, vol. 110, no. 7, pp. E602-E610, 2013. [47] Z. Xie et al., 'Non-canonical Wnt induces chondrocyte de-differentiation through Frizzled 6 and DVL-2/B-raf/CaMKIIα/syndecan 4 axis,' Cell Death Differ., vol. 25, no. 8, pp. 1442-1456, 2018. [48] M. Naito, A. Ohashi, and T. Takahashi, 'Dexamethasone inhibits chondrocyte differentiation by suppression of Wnt/β-catenin signaling in the chondrogenic cell line ATDC5,' Histochemistry and cell biology, vol. 144, no. 3, pp. 261-272, 2015. [49] S. Diederichs, V. Tonnier, M. März, S. I. Dreher, A. Geisbüsch, and W. Richter, 'Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy,' Cellular and Molecular Life Sciences, vol. 76, no. 19, pp. 3875-3889, 2019. [50] J. D. Kretlow et al., 'Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells,' BMC Cell Biol., vol. 9, p. 60, Oct 28 2008, doi: 10.1186/1471-2121-9-60. [51] C.-W. Hong, '微能量超音波細胞刺激載台之設計-Design of Very Low Intensity Ultrasound (VLIUS) Devices for Cellular Stimulation,' 2019, doi: 10.6342/NTU201902486. [52] Y.-C. Chu, J. Lim, C.-W. Hong, Y.-S. Chu, and J.-L. Wang, 'Design of an ultrasound chamber for cellular excitation and observation,' The Journal of the Acoustical Society of America, vol. 145, no. 6, pp. EL547-EL553, 2019. [53] V. Dayal and V. K. Kinra, 'Leaky Lamb waves in an anisotropic plate. I: An exact solution and experiments,' The Journal of the Acoustical Society of America, vol. 85, no. 6, pp. 2268-2276, 1989. [54] P. Xu et al., 'Low-intensity pulsed ultrasound-mediated stimulation of hematopoietic stem/progenitor cell viability, proliferation and differentiation in vitro,' Biotechnology letters, vol. 34, no. 10, pp. 1965-1973, 2012. [55] L. Ling et al., 'Low‐intensity pulsed ultrasound activates ERK 1/2 and PI 3K‐Akt signalling pathways and promotes the proliferation of human amnion‐derived mesenchymal stem cells,' Cell Proliferation, vol. 50, no. 6, p. e12383, 2017. [56] R. Cancedda, F. D. Cancedda, and P. Castagnola, 'Chondrocyte differentiation,' in International review of cytology, vol. 159: Elsevier, 1995, pp. 265-358. [57] L. Shum, C. M. Coleman, Y. Hatakeyama, and R. S. Tuan, 'Morphogenesis and dysmorphogenesis of the appendicular skeleton,' Birth Defects Res. C. Embryo Today Rev., vol. 69, no. 2, pp. 102-122, 2003. [58] T. Maruyama, A. J. Mirando, C.-X. Deng, and W. Hsu, 'The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development,' Science signaling, vol. 3, no. 123, pp. ra40-ra40, 2010. [59] A. C. Ahn and A. J. Grodzinsky, 'Relevance of collagen piezoelectricity to “Wolff's Law”: a critical review,' Med. Eng. Phys., vol. 31, no. 7, pp. 733-741, 2009. [60] R. M. Randall, Y. Y. Shao, L. Wang, and R. T. Ballock, 'Activation of Wnt Planar Cell Polarity (PCP) signaling promotes growth plate column formation in vitro,' Journal of Orthopaedic Research, vol. 30, no. 12, pp. 1906-1914, 2012. [61] P. Kuss et al., 'Regulation of cell polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 and WNT5A,' Developmental biology, vol. 385, no. 1, pp. 83-93, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56206 | - |
| dc.description.abstract | 不管是經過氣管手術或者關節受損,軟骨組織修復的速度都非常緩慢。在再生醫學的領域當中,有許多研究都嘗試提高幹細胞的增生速度與軟骨分化速度,希望藉此解決軟骨修復難題,本研究亦為此目標對人類的骨髓間質幹細胞進行研究。 實驗使用自製超音波驅動的壓電刺激系統,探討壓電刺激對幹細胞增生數量、軟骨分化程度以及細胞聚合形態的影響。使用西方墨點法與免疫螢光染色對刺激後的細胞內部phospho-ERK與SOX9蛋白質含量進行分析,並以細胞極性與細胞核β-catenin濃度探討壓電刺激與典型和非典型Wnt訊息傳遞路徑之間的關係。 本研究的結果顯示壓電刺激造成幹細胞內部phospho-ERK提升並有效地加快細胞增生。在LIC與LIC-Pro兩種刺激裝置不同的超音波能量層級之下 (約0.6 mW/cm^2與18 mW/cm^2) 皆促進細胞聚合與軟骨分化,且無需使用軟骨分化培養液。在壓電刺激後活化了細胞中典型Wnt訊息傳遞路徑與非典型Wnt細胞平面極性路徑,使細胞產生極性並依照電場較高的區域聚合,隨著軟骨標記蛋白SOX9的提升,聚合的細胞進行軟骨分化。 骨骼中存在許多膠原蛋白使其具有壓電的特性,然而其與體內軟骨形成的關聯性尚不明確。以本研究中的結果推測,壓電環境很有可能在人體內形成軟骨的過程中起作用。在體內產生壓電效應後,幹細胞向著產生電場的區域遷移與聚合,接著在軟骨分化因子的作用下進行分化。 本研究已經對人類骨髓間質幹細胞進行增生、分化與聚合的分段實驗,但並不確定從細胞低密度時持續培養至軟骨分化,壓電刺激是否能夠整合並貫穿在所有過程。各階段細胞內部其他蛋白質變化以及實際在臨床上的應用為未來主要研究方向。 | zh_TW |
| dc.description.abstract | Cartilage repair is a growing market due to aging population. Among various approaches, mesenchymal stem cells have been considered as a promising solution for cartilage tissue engineering and regeneration as chondrocytes extracted from aging patients cannot proliferate easily. The objective of the study is to investigate the effect of piezoelectric stimulation (PE) on bone marrow-derived human mesenchymal stem cells (hMSCs) with respect to proliferation and differentiation. The results revealed that PE promoted the proliferation of hMSCs possibly through elevation of phospho-ERK and its translocation into nucleus. Furthermore, PE can induce chondrogenesis of hMSCs even without the use of differentiation medium. In particular, PE caused clustering of hMSCs in a pattern highly correlated with the charge distribution on the quartz plate. By analyzing the orientation of primary cilia with respect to cells, we found both ultrasound and piezoelectric can induce cell polarity but required differentiation media to exhibit a visible representation. Although piezoelectricity is abundantly available in bones, the mechanism between piezoelectricity and cartilage formation is unclear. The results in the study suggest that piezoelectricity might play a role in hMSC proliferation and chondrogenesis. Furthermore, our results indicate that piezoelectric stimulation might offer a cheaper and faster way to induce chondrogenesis from hMSCs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:18:55Z (GMT). No. of bitstreams: 1 U0001-2707202017335100.pdf: 8522298 bytes, checksum: fce26f9bff11da127449f40944087a48 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 摘要 IV Abstract V 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 超音波簡介 1 1.1.1 醫用超音波 1 1.1.2 超音波參數 2 1.2 間質幹細胞簡介 3 1.3 超音波與電流刺激對間質幹細胞的研究 5 1.4 艾爾遜藍染色法 6 1.5 西方墨點法和免疫螢光染色 7 1.5.1 西方墨點法與免疫螢光染色簡介 7 1.5.2 實驗使用抗體 7 1.6 研究目的與動機 12 第二章 材料與方法 13 2.1 細胞培養 13 2.2 超音波刺激系統和超音波驅動的壓電刺激系統 14 2.2.1 LIC刺激載台和LIC-Pro刺激載台 14 2.2.2 裝置參數量測 19 2.3 增生實驗 21 2.3.1 增生實驗-實驗組別 22 2.3.2 增生實驗-實驗流程 22 2.3.3 細胞計數方法 23 2.4 艾爾遜藍染色前導實驗 24 2.5 分化實驗 25 2.5.1 分化實驗-實驗組別 26 2.5.2 分化實驗-實驗流程 26 2.4.3 艾爾遜藍染色與軟骨分化比例分析 27 2.6 聚合實驗 29 2.6.1 聚合實驗-實驗組別 29 2.6.2 聚合實驗-實驗流程 30 2.6.3 雲母粉圖形與COMSOL程式模擬 30 2.7 西方墨點法和免疫螢光染色 31 2.7.1 西方墨點法和免疫螢光染色步驟簡介 31 2.7.2 phospho-ERK核內濃度探討 35 2.7.3 軟骨分化基因SOX9探討 37 2.7.4 Wnt訊息傳遞路徑探討 38 2.8 統計分析 43 第三章 實驗結果與討論 44 3.1 增生實驗 44 3.1.1 細胞增生結果 44 3.1.2 免疫螢光染色phospho-ERK核內濃度探討 45 3.1.3 西方墨點法phospho-ERK 47 3.2 分化實驗 48 3.2.1 艾爾遜藍染色法前導實驗 48 3.2.2 間質幹細胞軟骨分化形態 50 3.2.3 分化實驗結果 51 3.2.4 分化實驗-軟骨分化比例分析 55 3.2.5 軟骨分化基因SOX9探討 58 3.4 聚合實驗 60 3.4.1 細胞聚合形態 60 3.4.2 雲母粉圖形、COMSOL程式模擬與細胞形態比較 63 3.4.3 Wnt訊息傳遞路徑探討 67 第四章 結論 75 第五章 未來展望 75 參考文獻 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 壓電刺激 | zh_TW |
| dc.subject | 微能量超音波 | zh_TW |
| dc.subject | 軟骨分化 | zh_TW |
| dc.subject | 增生 | zh_TW |
| dc.subject | 人類骨髓間質幹細胞 | zh_TW |
| dc.subject | 聚合 | zh_TW |
| dc.subject | very-low-intensity ultrasound | en |
| dc.subject | proliferation | en |
| dc.subject | bone marrow-derived human mesenchymal stem cells | en |
| dc.subject | piezoelectric stimulation | en |
| dc.subject | aggregation | en |
| dc.subject | chondrogenesis | en |
| dc.title | 壓電刺激對人類間質幹細胞增生、分化與聚合的影響 | zh_TW |
| dc.title | The effect of piezoelectric stimulation on human mesenchymal stem cells: proliferation, differentiation and aggregation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林峯輝(Feng-Huei Lin),劉浩澧(Hao-Li Liu),張至宏(Chih-Hung Chang),陳彥榮(Edward Chern) | |
| dc.subject.keyword | 壓電刺激,微能量超音波,人類骨髓間質幹細胞,增生,軟骨分化,聚合, | zh_TW |
| dc.subject.keyword | piezoelectric stimulation,very-low-intensity ultrasound,bone marrow-derived human mesenchymal stem cells,proliferation,chondrogenesis,aggregation, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202001926 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202017335100.pdf 未授權公開取用 | 8.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
