Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭秋萍(Chiu-Ping Cheng)
dc.contributor.authorLu Linen
dc.contributor.author林露zh_TW
dc.date.accessioned2021-06-16T05:18:53Z-
dc.date.available2019-09-05
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-16
dc.identifier.citationAfzal, A.A., Wood, A.J., and Lightfoot, D.A. (2008). Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol. Plant Microbe. Interact. 21, 507-517.
Bohm, H., Albert, I., Fan, L., Reinhard, A., and Nurnberger, T. (2014). Immune receptor complexes at the plant cell surface. Curr. Opin. in Plant Biol.20, 47-54.
Bajguz, A., and Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem.47, 1-8.
Balatero, C.H., Hautea, D.M., Narciso, J.O., and Hanson, P.M. (2005). QTL mapping for bacterial wilt resistance in Hawaii 7996 using AFLP, RGA, and SSR markers. In Bacterial Wilt Disease and the Ralstonia solanacearumSpecies Complex, C. Allen., P. Prior., and A. C. Hayward, eds. (American Phytopathological Society Press, St. Paul, MN), pp. 301-307.
Bella, J., Hindle, K.L., McEwan, P.A., and Lovell, S.C. (2008). The leucine-rich repeat structure. Cell. Mol. Life Sci.65, 2307-2333.
Ben, C., Debelle, F., Berges, H., Bellec, A., Jardinaud, M.F., Anson, P., Huguet, T., Gentzbittel, L., and Vailleau, F. (2013). MtQRRS1, anR-locus required forMedicago truncatulaquantitative resistance toRalstonia solanacearum. New Phytol.199, 758-772.
Bernoux, M., Timmers, T., Jauneau, A., Briere, C., de Wit, P.J.G.M., Marco, Y., and Deslandes, L. (2008). RD19, an Arabidopsiscysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell 20, 2252-2264.
Boatwright, J.L., and Pajerowska-Mukhtar, K. (2013). Salicylic acid: an old hormone up to new tricks. Mol. Plant Pathol.14, 623-634.
Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol.60, 379-406.
Bostock, R.M. (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol.43, 545-580.
Carmeille, A., Caranta, C., Dintinger, J., Prior, P., Luisetti, J., and Besse, P. (2006). Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor. Appl. Genet.113, 110-121.
Chen, Y.Y., Lin, Y.M., Chao, T.C., Wang, J.F., Liu, A.C., Ho, F.I., and Cheng, C.P. (2009). Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol. Plant.136, 324-335.
Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D.G., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500.
Dangl, J.L., Horvath, D.M., and Staskawicz, B.J. (2013). Pivoting the plant immune system from dissection to deployment. Science 341, 746-751.
Denance, N., Ranocha, P., Oria, N., Barlet, X., Riviere, M.-P., Yadeta, K.A., Hoffmann, L., Perreau, F., Clement, G., Maia-Grondard, A., van den Berg, G.C.M., Savelli, B., Fournier, S., Aubert, Y., Pelletier, S., Thomma, B.P.H.J., Molina, A., Jouanin, L., Marco, Y., and Goffner, D. (2013). Arabidopsiswat1(walls are thin1)-mediated resistance to the bacterial vascular pathogen,Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism. Plant J.73, 225-239.
Denance, N., Sanchez-Vallet, A., Goffner, D., and Molina, A. (2013). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci. U.S.A.4, 155-166.
Denny, T.P. (2006). Plant pathogenic Ralstonia species. In Plant-Associated Bacteria, S.S. Gnanamanickam, ed. (Dordreche, the Netherlands: Springer Science), pp. 573-644.
Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P., Beynon, J., and Marco, Y. (2002). Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Nat. Acad. Sci.99, 2404-2409.
Eitas, T.K., and Dangl, J.L. (2010). NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr. Opin. Plant Biol.13, 472-477.
Enkhbayar, P., Kamiya, M., Osaki, Mitsuru., Matsumoto, T., and Matsushima, N. (2003). Structural principles of leucine-rich repeat (LRR) proteins.Proteins. 54, 394-403.
Fegan, M., and Prior, P. (2005). How complex is the 'Ralstonia solanacearum species complex'? In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. C. Allen, P. Prior, and A. C. Hayward, eds. (American Phytopathological Society, St. Paul, MN), pp. 449-461.
Gao, M., Wang, X., Wang, D., Xu, F., Ding, X., Zhang, Z., Bi, D., Cheng, Y.T., Chen, S., and Li, X. (2009). Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe.6, 34-44.
Gish, L.A., and Clark, S.E. (2011). The RLK/Pelle family of kinases. Plant J.66, 117-127.
Gonzalez, V.M., Aventin, N., Centeno, E., and Puigdomenech, P. (2013). High presence absence gene variability in defense-related gene clusters of Cucumis melo.BMC Genomics 14, 782-794.
Hai, T.T.H., Esch, E., and Wang J.F. (2008). Resistance to Taiwanese race 1 strains of Ralstonia solanacearum in wild tomato germplasm.Eur. J. Plant Pathol. 122, 471-479.
Halim, V.A., Altmann, S., Ellinger, D., Eschen-Lippold, L., Miersch, O., Scheel, D., and Rosahl, S. (2009). PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J.57, 230-242.
Hayward. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum.Annu. Rev. Phytopathol.29, 65-87.
Hernandez-Blanco, C., Feng, D.X., Hu, J., Sanchez-Vallet, A., Deslandes, L., Llorente, F., Berrocal-Lobo, M., Keller, H., Barlet, X., Sanchez-Rodriguez, C., Anderson, L.K., Somerville, S., Marco, Y., and Molina, A. (2007). Impairment of cellulose synthases required for Arabidopsissecondary cell wall formation enhances disease resistance.Plant Cell 19, 890-903.
Hirsch, J., Deslandes, L., Feng, D.X., Balague, C., and Marco, Y. (2002). Delayed symptom development in ein2-1, an Arabidopsisethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia solanacearum. phytopathology92, 1142-1148.
Ho, G.D., and Yang, C.H. (1999). A single locus leads to resistance of Arabidopsis thaliana to bacterial wilt caused by Ralstonia solanacearumthrough a hypersensitive-like response.Phytopathology89, 673-678.
Hu, J., Barlet, X., Deslandes, L., Hirsh, J., Feng, D.X., Somssich, I., and Marco, Y. (2008). Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PLoS One3, e2589.
Ishihara, T., Mitsuhara, I., Takahashi, H., and Nakaho, K. (2012). Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS One7, e46763.
Katagiri, F. (2004). A global view of defense gene expression regulation – a highly interconnected signaling network. Curr. Opin. Plant Biol.7, 506-511.
Koornneef, A., and Pieterse, C.M.J. (2008). Cross talk in defense signaling. Plant Physiol.146, 839-844.
Lopez-Marques, R.L., Poulsen, L.R., and Palmgren, M.G. (2012). A putative plant aminophospholipid flippase, the Arabidopsis P4 ATPase ALA1, localizes to the plasmamembrane following association with a β-subunit. PLoS One7, e33042.
Lebeau, A., Daunay, M.C., Frary, A., Palloix, A., Wang, J.F., Dintinger, J., Chiroleu, F., Wicker, E., and Prior, P. (2011). Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in theRalstonia solanacearum species complex. Phytopathology 101, 154-165.
Lebeau, A., Gouy, M., Daunay, M.C., Wicker, E., Chiroleu, F., Prior, P., Frary, A., and Dintinger, J. (2013). Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theor. Appl. Genet. 126, 143-158.
Lim, J.H., Yang, H.J., Jung, K.H., Yoo, S.C., and Paek, N.C. (2014). Quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice. Mol. Cells 37, 149-160.
Lin, W.C., Lu, C.F., Wu, J.W., Cheng, M.L., Lin, Y.M., Yang, N.S., Black, L., Green, S.K., Wang, J.F., and Cheng, C.P. (2004). Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases.Transgenic Res.13, 567-581.
Lin, Y.M., Chou, I.C., Wang, J.F., Ho, F.I., Chu, Y.J., Huang, P.C., Lu, D.K., Shen, H.L., Elbaz, M., Huang, S.M., and Cheng, C.P. (2008). Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Mol. Plant Microbe. Interact. 21, 1261-1270.
Liu, Y., Schiff, M., and Dinesh-Kumar, S.P. (2002). Virus-induced gene silencing in tomato. Plant J. 21, 777-786.
Liu, Y., and Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386-3399.
Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H., and Kiba, A. (2010). S-glycoprotein-like protein regulates defense responses in Nicotianaplants against Ralstonia solanacearum. Plant Physiol.152, 2023-2035.
Mandal, S., Das, R.K., and Mishra, S. (2011). Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol. Biochem.49, 117-123.
Mangin, B., Thoquet, P., Oliver, J., and Grimsley, N.H. (1999). Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.Genetics151, 1165-1172.
Matsushima, N., Enkhbayar, P., Kamiya, M., Osaki, N., and Kretsinger, R.H. (2005). Leucine-rich repeats (LRRs): Structure, function, evolution and interaction with ligands. Drug Des. Rev. 2, 305-322.
Matsushima, N., and Miyashita, H. (2012). Leucine-rich repeat (LRR) domains containing intervening motifs in plants. Biomolecules 2, 288-311.
Matsushima, N., Miyashita, H., Mikami, T., and Kuroki, Y. (2010). A nested leucine rich repeat (LRR) domain: the precursor of LRRs is a ten or eleven residue motif. BMC Microbiol.10, 235.
McHale, L., Tan, X., Koehl, P., and Michelmore, R.W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome Biol.7, 212.
Meng, F. (2013). Ralstonia solanacearum species complex and bacterila wilt disease. J. Bacteriol. Parasitol. 4, e119.
Mimura, Y., Kageyama, T., Minamiyama, Y., and Hirai, M. (2009). QTL analysis for resistance to Ralstonia solanacearum in Capsicum accession LS2341.J. Japan. Soc. Hort. Sci. 78, 307-313.
Monaghan, J., and Zipfel, C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol.15, 349-357.
Mur, L.A.J., Laarhoven, L.J.J., Harren, F.J.M., Hall, M.A., and Smith, A.R. (2008). Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response. Plant Physiol.148, 1537-1546.
Muthamilarasan, M., and Prasad, M. (2013). Plant innate immunity: an updated insight into defense mechanism. J. Biosci. 38, 433-449.
Nakano, M., Nishihara, M., Yoshioka, H., Takahashi, H., Sawasaki, T., Ohnishi, K., Hikichi, Y., and Kiba, A. (2013). Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana. PLoS One8, e75124.
Narancio, R., Zorrilla, P., Robello, C., Gonzalez, M., Vilaro, F., Pritsch, C., and Rizza, M. (2013). Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum. Eur. J. Plant Pathol.136, 823-835.
Nguyen, H.P., Chakravarthy, S., Velasquez, A., McLane, H.L., Zeng, L., Nakayashiki, H., Park, D.H., Collmer, A., and Martin, G.B.. (2010). Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Mol. Plant Microbe. Interact. 23, 991-999.
Nűrnberger, T., Brunner, F., Kemmerling, B., and Piater, L. (2004). Innate immunity in plants and animals, striking similarities and obvious differences. Immunol Rev. 198, 249-266.
Ozgur, R., Turkan, I., Uzilday, B., and Sekmen, A.H. (2014). Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. J. Exp. Bot. 65, 1377-1390.
Poland, J.A., Bradbury, P.J., Buckler, E.S., and Nelson, R.J. (2011). Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc. Natl. Acad. Sci.U.S.A. 108, 6893-6898.
Prusky, D., and Lichter, A. (2007). Activation of quiescent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage. FEMS Microbiol. Lett. 268, 1-8.
Robatzek, S., Bittel, P., Chinchilla, D., Kochner, P., Felix, G., Shiu, S.H., and Boller, T. (2007). Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities.Plant Mol. Biol. 64, 539-547.
Robert-Seilaniantz, A., Grant, M., and Jones, J.D.G. (2011) Hormone crosstalk in Plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol.49, 317-343.
Rodriguez, M.C.S., Petersen, M., and Mundy, J. (2011). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61,621-649.
Sanchez-Vallet, A., Lopez, G., Ramos, B., Delgado-Cerezo, M., Riviere, M.P., Llorente, F., Fernandez, P.V., Miedes, E., Estevez, J.M., Grant, M., and Molina, A. (2012). Disruption of abscisic acid signaling constitutively activates Arabidopsisresistance to the necrotrophic fungusPlectosphaerella cucumerina. Plant Physiol.160, 2109-2124.
Senthil-Kumar, M., and Mysore, K.S. (2013). Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol.51, 407-427.
Spoel, S.H., Koornneed, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt,, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X., and Pieterse, C.M.J. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15, 760-770.
Takken, F.L.W., Luderer, R., Gabriels, S.H.E.J., Westerink, N., Lu, R., de Wit, P.J.G.M., and Joosten, M.H.A.J. (2000). A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-inducing cDNAs of plant pathogens. Plant J. 24, 275-283.
Taylor, K.W., Kim, J.G., Su, X.B., Aakre, C.D., Roden, J.A., Adams, C.M., and Mudgett, M.B. (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate Xanthomonas virulence. PLoS Pathog.8, e1002768.
The Tomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641.
Thomas, W.J., Thireault, C.A., Kimbrel, J.A., and Chang, J.H. (2009). Recombineering and stable integration of the Pseudomonas syringae pv. syringae61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. Plant J.60, 919-928.
Thouqet, P., Oliver, J., Sperisen, C., Rogowsky, P., Laterrot, H., and Grimsley, N. (1996). Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol. Plant Microbe. Interact. 9, 826-836.
Ton, J., Flors, V., and Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends Plant Sci.14, 310-317.
Torres, M.A., Jones, J.D.G., and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol.141, 373-378.
Tsuda, K., Sato, M., Glazebrook, J., Cohen, J.D., and Katagiri, F. (2008). Interplay between MAMP-triggered and SA-mediated defense responses. Plant J.53, 763-775.
Wang, J. F., Hanson, P., and Barnes, J. A. (1998). Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. In Bacterial Wilt Disease, P. Prior., C. Allen., and J. Elphinstone, eds.(Springer-Verlag Berlin Heidelberg GmbH), pp. 269-275.
Wang, J.F., Ho, F.I., Truong, H.T.H., Huang, S.M., Balatero, C.H., Dittapongpitch, V., and Hidayati, N. (2013). Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum. Euphytica 190, 241-252.
Jaunet, T.Z., and Wang, J.F. (1999). Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan.Phytopathology89, 320-327.
Wirthmueller, L., Maqbool, A., and Banfield, M.J. (2013). On the front line: structural insights into plant–pathogen interactions. Nat. Rev. Microbiol.11, 761-776.
Wrzaczek, M., Brosche, M., and Kangasjarvi, J. (2013). ROS signaling loops - production, perception, regulation. Curr. Opin. Plant Biol.16, 575-582.
Wulff, B.B.H., Horvath, D.M., and Ward, E.R. (2011). Improving immunity in crops: new tactics in an old game. Curr. Opin. Plant Biol.14, 468-476.
Yang, L., and Huang, H. (2014). Roles of small RNAs in plant disease resistance. J. Integr. Plant Biol.
Yang, W., and Francis, D.M. (2007). Genetics and breeding for resistance to bacterial diseases in tomato: prospects for marker-assistant selection. In Genetic Improvement of Solanaceous Crops Volumn 2: Tomato, M.K. Razdan., and A.K. Mattoo eds. (An imprint of Edenbridge Ltd., British Isles), pp. 389-419.
Zhang, C., Liu, L., Wang, X., Vossen, J., Li, G., Li, T., Zheng, Z., Gao, J., Guo, Y., Visser, R.G.F., Li, J., Bai, Y., and Du, Y. (2014). The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theor. Appl. Genet.127, 1353-1364.
Zhang, C., Liu, L., Zheng, Z., Sun, Y., Zhou, L., Yang, Y., Cheng, F., Zhang, Z., Wang, X., Huang, S., Xie, B., Du, Y., Bai, Y., and Li, J. (2013). Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. Theor. Appl. Genet.126, 2643-2653.
Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., Ba, H., Zhou, J., and Zhang, Y. (2012). Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringaeeffector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe.11, 253-263.
Zhu, J.Y., Sae-Seaw, J., and Wang, Z.Y. (2013). Brassinosteroid signalling. Development 140, 1615-1620.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56205-
dc.description.abstract由細菌Ralstonia solanacearum (Rs) 引起的土壤傳播性青枯病 (bacterial wilt,簡稱 BW) 可感染全球兩百多種植物,其中包含許多重要經濟作物,且是番茄前五大病害之一。番茄品系Hawaii7996 (H7996)是目前最為穩定的青枯病抗病植物,且已發現數個抗病數量性狀基因座(quantitative trait loci,簡稱QTL),然而,其抗病分子機制與關鍵抗病基因卻尚未知。為深入了解 H7996遺傳性質,採用全基因組解序策略並與 Heniz 1706 (H1706) 基因組進行序列比對後,結果發現核苷酸具有多型態變異並且普遍存在於各條染色體之基因片段與非基因片段。本研究針對位在 H7996第12條染色體上之抗第一演化型青枯病菌 QTL (命名為Bwr12) 進行基因搜尋與功能研究。在Bwr12區段預估的67個基因中,包含12個leucine-rich repeat (LRR)-receptor like kinase (RLKs)與LRR-receptor like protein (RLPs),序列分析結果顯示其中多個RLKs基因的序列在H7996與H1706中具明顯差異。病毒誘導基因靜默 (virus-induced gene silencing,簡稱 VIGS) 分析所得結果發現其中數個 RLKs 被個別或共同靜默後會造成 H7996之抗性明顯降低,且病毒誘導基因表現 (virus-mediated gene over-expression,簡稱 VMGO) 分析結果更進一步顯示12g520與12g550之表現可使不抗病番茄品系 WVa700之抗性增加,顯示12g520與12g550是 H7996抗青枯病之關鍵正調控者。 Pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) 被認為參與在抗病數量性狀位點中,根據基因靜默試驗結果得知12g520與12g550參與青枯病 PTI 反應之癒傷葡聚醣累積、 H2O2累積及 PTI 基因PTI5生合成,具有抵抗Pseudomonas syringae pv. tomato DC3000 hrcC- mutant 與Rs Pss4 hrpG- mutant 的能力。此外,蛋白質定位結果顯示12g520坐落在細胞膜。以上研究結果不但提供了番茄抗青枯病關鍵基因的重要訊息,預期亦可有助於發展基因標記,以提高抗病育種的篩選精準度與效率。zh_TW
dc.description.abstractBacterial wilt (BW), caused by Ralstonia solanacearum,is a highly complex and serious disease affecting a wide range of economically important crops worldwide, including tomato. Breeding for durable resistance in crops for this disease is important and urgent. Thus, comprehensive information on plant defense mechanisms would be highly desirable and necessary, but are still limited. Tomato cultivar Hawaii 7996 (H7996) is currently the most durable resistance source against BW. Despite various BW-resistance associated quantitative trait loci(QTLs) have been mapped on H7996 chromosomes, the involved molecular mechanism and gene identity remain undetermined. To gain insight into the genetic nature of H7996, we have determined its genome draft. Genome-wide sequence comparison analyses showed high sequence variations on several chromosomes between H7996 and the announced BW-susceptible cultivar Heniz 1706. In addition, we also carried out functional study on 12 putative leucine-rich repeat (LRR)-receptor like kinases (RLKs) and LRR-receptor like proteins (RLPs), which are located on one major QTL (Bwr12) associated with the H7996 resistance against Rs phylotype I strains. Comparative sequence analysis in H7996 and the Heniz1706 revealed significant sequence diversity in most of these genes. Virus-induced gene silencing (VIGS) assays suggested the involvement of a few RLKs in H7996 BW-resistance, and virus-mediated gene silencing (VMGO) assays further confirmed a positive role of 12g520 and 12g550 in H7996 BW-resistance. Pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) is suggested to be involved in disease-resistance associated quantitative traits. Furthermore, transient gene silencing assays suggested play an important role in PTI responses including callose deposition, H2O2accumulation and marker gene PTI5 expression against Pseudomonas syringaepv. tomato DC3000 hrcC- mutant and Rs Pss4 hrpG- mutant. In addition, GFP-12g520 is localized at the plasma membrane. These results together not only provide important information on BW-resistance genes involved in H7996 defense, as well as pave the way to develop gene-based markers useful for improving efficacy and efficiency of tomato breeding programs in industry and public sectors.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:18:53Z (GMT). No. of bitstreams: 1
ntu-103-R00b42013-1.pdf: 6616152 bytes, checksum: 6d5142af0cb5847c33859a002c674e8b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
中文摘要 iv
Abstract v
常用縮寫與全名對照表 vi
目錄 viii
表目錄 xii
圖目錄 xiii
附錄目錄 xiv
第一章前言 1
1. 青枯病 (Bacterial wilt, BW) 1
1.1 阿拉伯芥之青枯病反應相關研究 1
1.2 番茄之青枯病反應相關研究 2
1.3 其他植物之青枯病反應相關研究 4
2. 植物白胺酸重覆 (Leucine rich repeat, LRR) 蛋白質的特性 4
2.1 LRR receptors 結構與其功能 5
2.2 LRR receptors 與病菌之交互作用 5
3. 植物病害防禦機制 6
3.1 植物抗病反應 7
3.2 植物抗病訊息傳導 7
3.3 PAMP-triggered immunity 引發下游相關反應 8
4.研究動機 9
第二章材料與方法 10
1. 植物材料簡介 10
1.1 番茄 10
1.2 菸草 10
2. 本研究使用之細菌與其培養條件 10
3. 選殖技術 (Cloning) 11
3.1聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 11
3.2 DNA瓊脂糖凝膠電泳(agarose gel electrophoresis) 11
3.3 TOPOR質體構築 (TOPOR cloning) 12
3.4 LR 重組互換反應 (LR recombination) 12
3.5 微量抽取質體 DNA (Minipreparation of plasmid DNA) 12
3.6 DNA片段純化 (DNA purification) 13
3.7 DNA 限制酶消化水解 (DNA digestion) 13
3.8 載體與目標片段接合 (Ligation) 13
3.9大腸桿菌勝任細胞熱休克轉型作用 (Heat shock transformation) 13
3.10 電穿孔轉型作用之勝任細胞製備 (Competent cell preparation for electroporation) 14
3.11 電穿孔轉型作用 (Electroporation transformation) 14
4. 植物 DNA 萃取 (DNA extraction from plants) 14
5. 植物 DNA 全基因組解序 (Whole genome re-sequencing of plant) 15
6. 植物 RNA 萃取 (RNA extraction from plants) 16
6.1 微量抽取植物RNA 16
6.2 去除DNA 殘留 (DNase treatment) 16
7. 基因之 cDNA 釣取 17
7.1 cDNA 資料庫製備之植物材料 (plant samples of cDNA library) 17
7.2 反轉錄反應 (Reverse transcription) 17
8. 定量聚合酶連鎖反應 (quantitative polymerase chain reaction) 18
8.1 半定量 RT-PCR (Semi-quantitative RT-PCR, RT-sqPCR) 18
8.2 定量 RT-PCR (Quantitative RT-PCR, RT-qPCR) 18
9. 病毒誘導短暫性基因靜默與大量表現 (Virus-induced gene silencing [VIGS] and virus-mediated gene overexpression [VMGO]) 19
9.1 VIGS 19
9.2 VMGO 20
10. 番茄之青枯病反應檢測 (Tomato BW assay) 20
11. 番茄 PTI 防禦反應分析 (PTI defense response in tomato) 21
11.1 病菌處理 (Pathogen treatments) 21
11.2 癒傷葡聚醣累積分析 (Callose deposition assay) 21
11.3 過氧化物檢測 (ROS accumulation assay) 21
11.4 H2O2累積檢測 (H2O2 accumulation assay) 22
11.5 PTI5轉錄表現檢測 (PTI5 expression assay) 22
12. 青枯病菌感染後番茄基因轉錄之檢測 (Analysis of tomato gene expression after Rs inoculation) 22
13. 蛋白質在菸草葉片細胞之定位分析 (Sub-cellular localization in tobacco) 23
13.1 載體構築 23
13.2 蛋白質定位分析與細胞質壁分離 23
第三章結果 25
1. 番茄Hawaii 7996 (H7996) 全基因組草圖 25
2. 番茄Bwr12區段內基因群之功能歸類與序列比對分析 26
3. 以短暫基因靜默策略分析Bwr12相關 RLKs/RLPs 在H7996 青枯病抗性之角色 27
4. 以短暫基因大量表現策略分析12g520、12g550及12g530在 H7996青枯病抗性之角色 28
5. 番茄 PTI 反應分析系統之建立 29
6. 12g520與12g550之表現量對番茄 PTI 反應的影響 31
7. 接種青枯病菌後之12g520與12g550表現 31
8. 12g520與12g550蛋白質產物在植物細胞中之座落位置 32
第四章討論 33
1. 抗青枯病番茄 H7996之數條染色體具有高度序列差異性 33
2. 青枯病菌誘發之番茄 PTI 反應 34
3. 數個Bwr12 區段之 RLK 基因參與 H7996對 phylotype I 青枯病菌之抗性 36
4. 12g520參與 H7996青枯病抗性之可能機制 37
5. 12g550參與 H7996青枯病抗性之可能機制 38
6. 12g720/740參與 H7996青枯病抗性 39
7. H7996 Bwr12之訊息傳導 39
8. 結語 40
第五章參考文獻 41
第六章附錄 49
dc.language.isozh-TW
dc.title番茄抗青枯病品系Hawaii7996之解序與其抗第一演化型青枯病菌基因座Bwr12之研究zh_TW
dc.titleGenome draft of bacterial wilt resistant tomato Hawaii7996 and study of the resistance locus Bwr12 against Ralstonia solanacearum phylotype I strainsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉瑞芬(Ruey-Fen Liou),鄭貽生(Yi-Sheng Cheng),張英?(Ing-Feng Chang),陳逸然(Yet-Ran Chen)
dc.subject.keyword青枯病,青枯病菌,數量性狀位點,H7996,LRR,RLK,PTI,zh_TW
dc.subject.keywordBacterial wilt,Ralstonia solanacearum,QTL,Hawaii7996,LRR,RLK,PTI,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2014-08-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
6.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved