Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥甫(Yan-Fu Kuo)
dc.contributor.authorCheng-Liang Chienen
dc.contributor.author簡政良zh_TW
dc.date.accessioned2021-06-16T05:18:49Z-
dc.date.available2016-09-03
dc.date.copyright2014-09-03
dc.date.issued2014
dc.date.submitted2014-08-16
dc.identifier.citation[1] A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, C. Smigal, and M. J. Thun, 'Cancer statistics, 2006,' Ca-A Cancer Journal for Clinicians, vol. 56, no. 2, pp. 106-130, 2006.
[2] R. Freitas Jr, W. F. Fiori, F. J. D. F. Ramos, E. Godinho, R. M. S. Rahal, and J. G. De Oliveira, 'Discomfort and pain during mammography,' Revista da Associacao Medica Brasileira, vol. 52, no. 5, pp. 333-336, 2006.
[3] K. J. Helzlsouer, E. L. Harris, R. Parshad, S. Fogel, W. L. Bigbee, and K. K. Sanford, 'Familial clustering of breast cancer: Possible interaction between DNA repair proficiency and radiation exposure in the development of breast cancer,' International Journal of Cancer, vol. 64, no. 1, pp. 14-17, 1995.
[4] A. Karellas, and S. Vedantham, 'Breast cancer imaging: A perspective for the next decade,' Medical Physics, vol. 35, no. 11, pp. 4878-4897, 2008.
[5] M. Nothacker, V. Duda, M. Hahn, M. Warm, F. Degenhardt, H. Madjar, S. Weinbrenner, and U. S. Albert, 'Early detection of breast cancer: Benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review,' BMC Cancer, vol. 9, pp. 335, 2009.
[6] V. Corsetti, N. Houssami, M. Ghirardi, A. Ferrari, M. Speziani, S. Bellarosa, G. Remida, C. Gasparotti, E. Galligioni, and S. Ciatto, 'Evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: Interval breast cancers at 1 year follow-up,' European Journal of Cancer, vol. 47, no. 7, pp. 1021-1026, 2011.
[7] A. D. Brooks, A. B. Nover, S. Jagtap, W. Anjum, H. Yegingil, W. Y. Shih, and W. H. Shih, 'Modern breast cancer detection: A technological review,' International Journal of Biomedical Imaging, vol. 2009, 2009.
[8] H. D. Cheng, J. Shan, W. Ju, Y. Guo, and L. Zhang, 'Automated breast cancer detection and classification using ultrasound images: A survey,' Pattern Recognition, vol. 43, no. 1, pp. 299-317, 2010.
[9] E. A. Rakha, J. S. Reis-Filho, F. Baehner, D. J. Dabbs, T. Decker, V. Eusebi, S. B. Fox, S. Ichihara, J. Jacquemier, S. R. Lakhani, J. Palacios, A. L. Richardson, S. J. Schnitt, F. C. Schmitt, P. H. Tan, G. M. Tse, S. Badve, and I. O. Ellis, 'Breast cancer prognostic classification in the molecular era: The role of histological grade,' Breast Cancer Research, vol. 12, no. 4, 2010.
[10] C. W. Elston, and I. O. Ellis, 'Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up,' Histopathology, vol. 19, no. 5, pp. 403-410, 1991.
[11] D. R. Chen, R. F. Chang, and Y. L. Huang, 'Computer-aided diagnosis applied to US of solid breast nodules by using neural networks,' Radiology, vol. 213, no. 2, pp. 407-412, 1999.
[12] Y. Jiang, R. M. Nishikawa, R. A. Schmidt, C. E. Metz, M. L. Giger, and K. Doi, 'Improving breast cancer diagnosis with computer-aided diagnosis,' Academic Radiology, vol. 6, no. 1, pp. 22-33, 1999.
[13] V. A. Dumane, P. M. Shankar, C. W. Piccoli, J. M. Reid, F. Forsberg, and B. B. Goldberg, 'Computer aided classification of masses in ultrasonic mammography,' Medical Physics, vol. 29, no. 9, pp. 1968-1973, 2002.
[14] Y. L. Huang, and D. R. Chen, 'Support vector machines in sonography: Application to decision making in the diagnosis of breast cancer,' Clinical Imaging, vol. 29, no. 3, pp. 179-184, 2005.
[15] I. Abdel-Qader, and F. Abu-Amara, 'A Computer-Aided Diagnosis System for Breast Cancer Using Independent Component Analysis and Fuzzy Classifier,' Modelling and Simulation in Engineering, vol. 2008, pp. 9, 2008.
[16] Y. L. Huang, D. R. Chen, Y. R. Jiang, S. J. Kuo, H. K. Wu, and W. K. Moon, 'Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound,' Ultrasound in Obstetrics and Gynecology, vol. 32, no. 4, pp. 565-572, 2008.
[17] M. Andre, M. Galperin, H. Ojeda‐Fournier, L. Olson, A. Berry, C. Comstock, apos, and M. Boyle, 'Performance of a Method to Aid Breast Ultrasound Interpretation Using Image Processing and Case‐Based Reasoning,' Medical Physics, vol. 36, no. 6, pp. 2778, 2009.
[18] C. Y. Chen, H. J. Chiou, S. Y. Chou, S. Y. Chiou, H. K. Wang, Y. H. Chou, and H. K. Chiang, 'Computer-Aided Diagnosis of Soft-Tissue Tumors Using Sonographic Morphologic and Texture Features,' Academic Radiology, vol. 16, no. 12, pp. 1531-1538, 2009.
[19] M. Andre, M. Galperin, H. Ojeda‐Fournier, L. Olson, apos, M. Boyle, M. Ledgerwood, and C. Comstock, 'Radiologists' Performance while Using a Computer‐Aided Diagnostic Method to Aid Breast Ultrasound Interpretation,' Medical Physics, vol. 38, no. 6, pp. 3747, 2011.
[20] M. P. Andre, M. Galperin, A. Berry, H. Ojeda-Fournier, M. O’Boyle, L. Olson, C. Comstock, A. Taylor, and M. Ledgerwood, 'Performance of a Method to Standardize Breast Ultrasound Interpretation Using Image Processing and Case-Based Reasoning,' in Acoustical Imaging, M. P. Andre, J. P. Jones, and H. Lee Eds., vol. 30, pp. 3-9, Springer Netherlands, 2011.
[21] D. R. Chen, Y. L. Huang, and S. H. Lin, 'Computer-aided diagnosis with textural features for breast lesions in sonograms,' Computerized Medical Imaging and Graphics, vol. 35, no. 3, pp. 220-226, 2011.
[22] W. K. Moon, Y. W. Shen, C. S. Huang, L. R. Chiang, and R. F. Chang, 'Computer-Aided Diagnosis for the Classification of Breast Masses in Automated Whole Breast Ultrasound Images,' Ultrasound in Medicine and Biology, vol. 37, no. 4, pp. 539-548, 2011.
[23] Y. Liu, H. D. Cheng, J. H. Huang, Y. T. Zhang, X. L. Tang, J. W. Tian, and Y. Wang, 'Computer aided diagnosis system for breast cancer based on color doppler flow imaging,' Journal of Medical Systems, vol. 36, no. 6, pp. 3975-3982, 2012.
[24] T. Tan, B. Platel, H. Huisman, C. I. Sanchez, R. Mus, and N. Karssemeijer, 'Computer-aided lesion diagnosis in automated 3-D breast ultrasound using coronal spiculation,' IEEE Transactions on Medical Imaging, vol. 31, no. 5, pp. 1034-1042, 2012.
[25] Y. C. Lai, Y. S. Huang, D. W. Wang, C. M. Tiu, Y. H. Chou, and R. F. Chang, 'Computer-Aided Diagnosis for 3-D Power Doppler Breast Ultrasound,' Ultrasound in Medicine and Biology, vol. 39, no. 4, pp. 555-567, 2013.
[26] R. Kohavi, and G. H. John, 'Wrappers for feature subset selection,' Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.
[27] W. J. Wu, and W. K. Moon, 'Ultrasound Breast Tumor Image Computer-Aided Diagnosis With Texture and Morphological Features,' Academic Radiology, vol. 15, no. 7, pp. 873-880, 2008.
[28] W. C. Shen, R. F. Chang, W. K. Moon, Y. H. Chou, and C. S. Huang, 'Breast Ultrasound Computer-Aided Diagnosis Using BI-RADS Features,' Academic Radiology, vol. 14, no. 8, pp. 928-939, 2007.
[29] A. V. Alvarenga, A. F. C. Infantosi, W. C. A. Pereira, and C. M. Azevedo, 'Assessing the combined performance of texture and morphological parameters in distinguishing breast tumors in ultrasound images,' Medical Physics, vol. 39, no. 12, pp. 7350-7358, 2012.
[30] K. Horsch, A. F. Ceballos, M. L. Giger, I. Bonta, Z. Huo, C. J. Vyborny, E. Hendrick, and L. Lan, 'Optimizing feature selection across a multimodality database in computerized classification of breast lesions,' in Medical Imaging 2002: Image Processing, vol. 4684 of Proceedings of SPIE, vol. 4684 II, pp. 986-992, 2002.
[31] X. Shi, H. D. Cheng, and L. Hu, 'Mass detection and classification in breast ultrasound images using fuzzy SVM,' in Proceedings of the 9th Joint Conference on Information Sciences, 2006.
[32] K. Drukker, C. A. Sennett, and M. L. Giger, 'The effect of image quality on the appearance of lesions on breast ultrasound - Implications for CADx,' in Medical Imaging 2007: Computer-Aided Diagnosis, vol. 6514 of Proceedings of SPIE, vol. 6514, 2007.
[33] B. Sahiner, H. P. Chan, M. A. Roubidoux, L. M. Hadjiiski, M. A. Helvie, C. Paramagul, J. Bailey, A. V. Nees, and C. Blane, 'Malignant and benign breast masses on 3D US volumetric images: Effect of computer-aided diagnosis on radiologist accuracy,' Radiology, vol. 242, no. 3, pp. 716-724, 2007.
[34] J. Cui, B. Sahiner, H. P. Chan, A. Nees, C. Paramagul, L. M. Hadjiiski, C. Zhou, and J. Shi, 'A new automated method for the segmentation and characterization of breast masses on ultrasound images,' Medical Physics, vol. 36, no. 5, pp. 1553-1565, 2009.
[35] Y. Shi, D. Dai, C. Liu, and H. Yan, 'Sparse discriminant analysis for breast cancer biomarker identification and classification,' Progress in Natural Science, vol. 19, no. 11, pp. 1635-1641, 2009.
[36] A. Uchida, H. Sekine, K. Fukuhara, K. Yoshida, T. Takayama, C. Kobayashi, O. Kashimura, S. Muljono, D. Arief, M. Evri, and M. Sadly, 'Development of growth stage classification method for paddy fields by using Sparse Linear Discriminant Analysis,' in Proceedings of the 32nd Asian Conference on Remote Sensing, vol. 1, pp. 115-119, 2011.
[37] P. Filzmoser, M. Gschwandtner, and V. Todorov, 'Review of sparse methods in regression and classification with application to chemometrics,' Journal of Chemometrics, vol. 26, no. 3-4, pp. 42-51, 2012.
[38] E. Andries, and S. Martin, 'Sparse methods in spectroscopy: An introduction, overview, and perspective,' Applied Spectroscopy, vol. 67, no. 6, pp. 579-593, 2013.
[39] M. G. Ljungqvist, S. Frosch, M. E. Nielsen, and B. K. Ersboll, 'Multispectral image analysis for robust prediction of astaxanthin coating,' Applied Spectroscopy, vol. 67, no. 7, pp. 738-746, 2013.
[40] M. Yan, S. J. Pamp, J. Fukuyama, P. H. Hwang, D. Y. Cho, S. Holmes, and D. A. Relman, 'Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage,' Cell Host and Microbe, vol. 14, no. 6, pp. 631-640, 2013.
[41] J. Yang, D. Chu, L. Zhang, Y. Xu, and J. Yang, 'Sparse representation classifier steered discriminative projection with applications to face recognition,' IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 7, pp. 1023-1035, 2013.
[42] Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang, and A. Cichocki, 'Aggregation of sparse linear discriminant analyses for event-related potential classification in brain-computer interface,' International Journal of Neural Systems, vol. 24, no. 1, 2014.
[43] L. Clemmensen, T. Hastie, D. Witten, and B. Ersboll, 'Sparse discriminant analysis,' Technometrics, vol. 53, no. 4, pp. 406-413, 2011.
[44] J. Q. Gan, B. Awwad Shiekh Hasan, and C. S. L. Tsui, 'A hybrid approach to feature subset selection for brain-computer interface design,' vol. 6936 LNCS, pp. 279-286, 12th International Conference on Intelligent Data Engineering and Automated Learning, Norwich, 2011.
[45] D. R. Hunter, D. S. P. Richards, and J. L. Rosenberger, Nonparametric Statistics and Mixture Models: A Festschrift in Honor of Thomas P Hettmansperger, World Scientific Publishing Company, 2011.
[46] P. M. Lamb, N. M. Perry, S. J. Vinnicombe, and C. A. Wells, 'Correlation between ultrasound characteristics, mammographic findings and histological grade in patients with invasive ductal carcinoma of the breast,' Clinical Radiology, vol. 55, no. 1, pp. 40-44, 2000.
[47] S. H. Kim, B. K. Seo, J. Lee, S. J. Kim, K. R. Cho, K. Y. Lee, B. K. Je, H. Y. Kim, Y. S. Kim, and J. H. Lee, 'Correlation of ultrasound findings with histology, tumor grade, and biological markers in breast cancer,' Acta Oncologica, vol. 47, no. 8, pp. 1531-1538, 2008.
[48] M. Aho, A. Irshad, S. J. Ackerman, M. Lewis, R. Leddy, T. L. Pope, A. S. Campbell, A. Cluver, B. J. Wolf, and J. E. Cunningham, 'Correlation of sonographic features of invasive ductal mammary carcinoma with age, tumor grade, and hormone-receptor status,' Journal of Clinical Ultrasound, vol. 41, no. 1, pp. 10-17, 2013.
[49] S. Wojcinski, A. A. Soliman, J. Schmidt, L. Makowski, F. Degenhardt, and P. Hillemanns, 'Sonographic features of triple-negative and non-triple-negative breast cancer,' Journal of Ultrasound in Medicine, vol. 31, no. 10, pp. 1531-1541, 2012.
[50] American College of Radiology. Breast imaging reporting and data system (BI-RADS) Ultrasound. 1st ed. Reston, Virginia: American College of Radiology.
[51] A. Irshad, R. Leddy, E. Pisano, N. Baker, M. Lewis, S. Ackerman, and A. Campbell, 'Assessing the role of ultrasound in predicting the biological behavior of breast cancer,' American Journal of Roentgenology, vol. 200, no. 2, pp. 284-290, 2013.
[52] Y. C. Chang, Y. H. Huang, C. S. Huang, and R. F. Chang, 'Vascular Morphology and Tortuosity Analysis of Breast Tumor Inside and Outside Contour by 3-D Power Doppler Ultrasound,' Ultrasound in Medicine and Biology, vol. 38, no. 11, pp. 1859-1869, 2012.
[53] P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig, 'User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability,' NeuroImage, vol. 31, no. 3, pp. 1116-1128, 2006.
[54] S. Osher, and J. A. Sethian, 'Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,' Journal of Computational Physics, vol. 79, no. 1, pp. 12-49, 1988.
[55] V. Caselles, F. Catte, T. Coll, and F. Dibos, 'A geometric model for active contours in image processing,' Numerische Mathematik, vol. 66, no. 1, pp. 1-31, 1994.
[56] V. Caselles, R. Kimmel, and G. Sapiro, 'Geodesic Active Contours,' International Journal of Computer Vision, vol. 22, no. 1, pp. 61-79, 1997.
[57] J. A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge Univ. Press., 1999.
[58] R. M. Haralick, K. Shanmugam, and I. Dinstein, 'Textural features for image classification,' IEEE Transactions on Systems, Man and Cybernetics, vol. smc 3, no. 6, pp. 610-621, 1973.
[59] W. Chen, M. L. Giger, H. Li, U. Bick, and G. M. Newstead, 'Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images,' Magnetic Resonance in Medicine, vol. 58, no. 3, pp. 562-571, 2007.
[60] R. Jobanputra, and D. A. Clausi, 'Texture analysis using Gaussian weighted grey level co-occurrence probabilities,' in Proceedings of the 1st Canadian Conference on Computer and Robot Vision, pp. 51-57, 2004.
[61] E. Bribiesca, 'An easy measure of compactness for 2D and 3D shapes,' Pattern Recognition, vol. 41, no. 2, pp. 543-554, 2008.
[62] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2009.
[63] S. Arlot, and A. Celisse, 'A survey of cross-validation procedures for model selection,' Statistics Surveys, vol. 4, pp. 40-79, 2010.
[64] J. A. Hanley, and B. J. McNeil, 'The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve,' Radiology, vol. 143, no. 1, pp. 29-36, 1982.
[65] M. H. Zweig, and G. Campbell, 'Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine,' Clinical Chemistry, vol. 39, no. 4, pp. 561-577, 1993.
[66] S. H. Park, J. M. Goo, and C.-H. Jo, 'Receiver Operating Characteristic (ROC)Curve Practical Review for Radiologists,' Korean Journal of Radiology, vol. 5, no. 1, pp. 11-18, 2004.
[67] M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li, Applied Linear Regression Models, McGraw-Hill Irwin, New York, 2004.
[68] T. A. Craney, and J. G. Surles, 'Model-dependent variance inflation factor cutoff values,' Quality Engineering, vol. 14, no. 3, pp. 391-403, 2002.
[69] B. Sahiner, H. P. Chan, M. A. Roubidoux, M. A. Helvie, L. M. Hadjiiski, A. Ramachandran, C. Paramagul, G. L. LeCarpentier, A. Nees, and C. Blane, 'Computerized characterization of breast masses on three-dimensional ultrasound volumes,' Medical Physics, vol. 31, no. 4, pp. 744-754, 2004.
[70] P. S. Rodrigues, G. A. Giraldi, M. Provenzano, M. D. Faria, R. F. Chang, and J. S. Suri, 'A new methodology based on q-entropy for breast lesion classification in 3-D ultrasound images,' in pp. 1048-1051, 2006.
[71] G. Dougherty, Digital Image Processing for Medical Applications, Cambridge University Press, 2009.
[72] A. Ben-Hur, and J. Weston, 'A user's guide to support vector machines,' Methods in molecular biology (Clifton, N.J.), vol. 609, pp. 223-239, 2010.
[73] C. C. Chang, and C. J. Lin, 'LIBSVM: A Library for support vector machines,' ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, 2011.
[74] C. L. Huang, and C. J. Wang, 'A GA-based feature selection and parameters optimizationfor support vector machines,' Expert Systems with Applications, vol. 31, no. 2, pp. 231-240, 2006.
[75] C. K. Osborne, M. G. Yochmowitz, W. A. Knight Iii, and W. L. McGuire, 'The value of estrogen and progesterone receptors in the treatment of breast cancer,' Cancer, vol. 46, no. 12 SUPPL., pp. 2884-2888, 1980.
[76] D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, 'Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene,' Science, vol. 235, no. 4785, pp. 177-182, 1987.
[77] J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, 'The HER-2/neu gene and protein in breast cancer 2003: Biomarker and target of therapy,' Oncologist, vol. 8, no. 4, pp. 307-325, 2003.
[78] R. Molina, V. Barak, A. Van Dalen, M. J. Duffy, R. Einarsson, M. Gion, H. Goike, R. Lamerz, M. Nap, G. Soletormos, and P. Stieber, 'Tumor markers in breast cancer - European group on tumor markers recommendations,' Tumor Biology, vol. 26, no. 6, pp. 281-293, 2005.
[79] D. C. Allred, R. W. Carlson, D. A. Berry, H. J. Burstein, S. B. Edge, L. J. Goldstein, A. Gown, M. E. Hammond, J. D. Iglehart, S. Moench, L. J. Pierce, P. Ravdin, S. J. Schnitt, and A. C. Wolff, 'NCCN Task Force Report: Estrogen receptor and progesterone receptor testing in breast cancer by immunohistochemistry,' JNCCN Journal of the National Comprehensive Cancer Network, vol. 7, no. SUPPL. 6, pp. S1-S21, 2009.
[80] J. M. Harvey, G. M. Clark, C. K. Osborne, and D. C. Allred, 'Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer,' Journal of Clinical Oncology, vol. 17, no. 5, pp. 1474-1481, 1999.
[81] Y. Hatanaka, K. Hashizume, Y. Kamihara, H. Itoh, H. Tsuda, R. Yoshiyuki Osamura, and Y. Tani, 'Quantitative immunohistochemical evaluation of HER2/neu expression with HercepTest™ in breast carcinoma by image analysis,' Pathology International, vol. 51, no. 1, pp. 33-36, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56203-
dc.description.abstract本研究在於開發出透過三維超音波影像對乳房腫瘤進行良惡性分類,以及對乳癌腫瘤進行分級的計算機輔助診斷系統。對女性而言,乳癌是世界上造成最多死亡的癌症。為了改善病人的存活率,早期的乳癌診斷是必須的。過去研究中,在檢查乳癌裡,超音波成像已認為是一種能輔助乳房X光攝影的成像工具。所以,電腦輔助診斷系統是能被開發來協助醫生,透過超音波影像來進行乳房腫瘤的診斷。建立電腦輔助診斷系統的過程中,量化特徵是耗時的。所以,使用較少特徵的電腦輔助診斷系統是較好的。本研究中,首先從病人身上收集乳房腫瘤的三維超音波影像。然後,使用型態、紋理以及橢球近似特徵來描述乳房腫瘤的特性。之後,使用稀疏線性判別分析來區別出一組最小限度的特徵。研究結果顯示,使用最小限度的特徵以及全部特徵的這兩個系統,在統計學上的精確度是沒有差別的。本研究也探討乳癌腫瘤等級的區別。乳癌等級是一個對患者預後的標準指標。若能夠在早期的時候評估出乳癌等級,可使得醫生在患者的診斷上更有選擇性,且能適當地確定治療方式。本研究開發出協助醫生對乳癌腫瘤分級的電腦輔助診斷系統。研究過程中,從病人身上收集三維超音波的乳癌腫瘤影像。使用型態、紋理、橢球近似與後方回音的特徵來量化腫瘤的特性。使用結合基因演算法的支持向量機,開發出計算機輔助診斷系統來分類乳癌腫瘤等級。此電腦輔助診斷系統的精確度可達85.14%。此結果顯示,開發出來的電腦輔助診斷系統能有效分類低等級與高等級的乳癌腫瘤。zh_TW
dc.description.abstractThis work aims to develop computer-aided diagnosis (CAD) systems for (1) breast cancer screening and (2) tumor grade classification in ultrasound (US) images. Breast cancer is a leading cause of death for women worldwide. Early diagnosis of breast cancer is essential for improving the patient survival rate. US imaging has been reported as a noninvasive and effective tool for breast cancer screening as a supplement to mammography. CAD systems are often developed for screening breast cancer in US images. When developing CAD systems, the process of quantifying features is time consuming. It is preferable to use only crucial features in the CAD systems. In this work, three-dimensional (3D) US images of breast tumor were obtained at hospital. Tumor features, including morphological, textural, and ellipsoid-fitting features, were quantified to describe the characteristics of the tumors. Sparse linear discriminant analysis was then applies for identifying a minimal set of features to be used in tumor classification. The results indicated the accuracies of the systems developed using the minimal set and full set were statistically equivalent. This work also studied tumor grade discrimination in US images. Breast cancer grade is a standard indicator of prognosis in patients. Noninvasive and early assessment of tumor grade allows doctors to be more selective in their diagnosis and to appropriately determine the treatment to the patients. This work developed a CAD system for discriminating the breast cancer grades. In the process, the 3D US images of breast tumor were obtained. Morphological, textural, ellipsoid-fitting, and posterior acoustic features were quantified to describe the characteristics of the tumors. A support vector machine with genetic algorithm was then proposed to develop the CAD system that classifies breast tumor grades. The CAD system attained a classification accuracy of 85.14%. It is demonstrated that the developed CAD system can effectively classify between low and high grades of breast tumors.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:18:49Z (GMT). No. of bitstreams: 1
ntu-103-R01631015-1.pdf: 1144338 bytes, checksum: d027d4e04a48664847ded04679fe91f2 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER 1. INTRODUCTION 1
1.1 Breast Cancer 1
1.2 Ultrasound Imaging 1
1.3 Tumor Grade 2
1.4 Objectives 2
1.5 Organization 2
CHAPTER 2. LITERATURE REVIEW 4
2.1 Computer-aided Diagnosis System for Breast Cancer Screening 4
2.2 Feature Selection in Computer-aided Diagnosis System 4
2.3 Relation between Tumor Grade and Sonographic features 5
CHAPTER 3. FEATURE SELECTION FOR CLASSIFICATION OF BENIGN AND MALIGNANT BREAST TUMORS IN ULTRASOUND IMAGING USING SPARSE LINEAR DISCRIMINANT ANALYSIS 7
3.1 Material and Methods 7
3.1.1 Volumetric Ultrasound Image Acquisition 7
3.1.2 Tumor Segmentation 8
3.1.3 Feature Quantification 9
3.1.4 Feature Selection 11
3.1.5 Performance Assessment 13
3.2 Experiment 13
3.2.1 Feature Analysis 13
3.2.2 Feature Selection 17
3.2.3 Model Performance Evaluation 20
3.2.4 Reduction in Computational Time 22
3.3 Concluding Remarks 23
CHAPTER 4. ASSESSMENT OF TUMOR GRADES FOR BREAST CANCER IN 3D ULTRASOUND IMAGE 24
4.1 Material and Methods 24
4.1.1 Volumetric Ultrasound Image Acquisition 24
4.1.2 Tumor Segmentation 25
4.1.3 Feature Quantification 26
4.1.4 Tumor Grade Classification and Attribute Selection 29
4.1.5 Performance Assessment 30
4.2 Experiment 30
4.2.1 Feature Analysis 30
4.2.2 Feature Selection 33
4.2.3 Model Performance Evaluation 33
4.2.4 Feature Analysis for Biological Markers 34
4.3 Concluding Remarks 35
5. DISCUSSION AND CONCLUSION 37
REFERENCES 38
dc.language.isoen
dc.title利用三維超音波影像與電腦輔助系統診斷乳癌腫瘤良惡性與惡性等級zh_TW
dc.titleComputer-aided Diagnosis System for Breast Cancer Diagnosis and Tumor Grade Classification in 3D Ultrasound Imageen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳達人(Dar-Ren Chen),吳順德(Shuen-De Wu)
dc.subject.keyword乳癌,三維超音波影像,電腦輔助診斷系統,稀疏線性判別分析,支持向量機,zh_TW
dc.subject.keywordBreast Cancer,Three-dimensional Ultrasound Image,Computer-aided Diagnosis System,Sparse Linear Discriminant Analysis,Support Vector Machine,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2014-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved