Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56180
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國(Chien-Kuo Lee)
dc.contributor.authorYing-Yin Chaoen
dc.contributor.author趙穎吟zh_TW
dc.date.accessioned2021-06-16T05:18:00Z-
dc.date.available2019-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citationAbt, M.C., and Artis, D. (2009). The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis. Current opinion in gastroenterology 25, 496-502.
Adams, G.B., and Scadden, D.T. (2006). The hematopoietic stem cell in its place. Nature immunology 7, 333-337.
Akashi, K., Kondo, M., Cheshier, S., Shizuru, J., Gandy, K., Domen, J., Mebius, R., Traver, D., and Weissman, I.L. (1999). Lymphoid development from stem cells and the common lymphocyte progenitors. Cold Spring Harbor symposia on quantitative biology 64, 1-12.
Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801.
Belyaev, N.N., Brown, D.E., Diaz, A.I., Rae, A., Jarra, W., Thompson, J., Langhorne, J., and Potocnik, A.J. (2010). Induction of an IL7-R(+)c-Kit(hi) myelolymphoid progenitor critically dependent on IFN-gamma signaling during acute malaria. Nature immunology 11, 477-485.
Blasius, A.L., Barchet, W., Cella, M., and Colonna, M. (2007). Development and function of murine B220+CD11c+NK1.1+ cells identify them as a subset of NK cells. The Journal of experimental medicine 204, 2561-2568.
Broz, P., and Monack, D.M. (2013). Newly described pattern recognition receptors team up against intracellular pathogens. Nature reviews. Immunology 13, 551-565.
Chen, L.S., Wei, P.C., Liu, T., Kao, C.H., Pai, L.M., and Lee, C.K. (2009). STAT2 hypomorphic mutant mice display impaired dendritic cell development and antiviral response. Journal of biomedical science 16, 22.
Chen, Y.L., Chen, T.T., Pai, L.M., Wesoly, J., Bluyssen, H.A., and Lee, C.K. (2013). A type I IFN-Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors. The Journal of experimental medicine 210, 2515-2522.
Fancke, B., Suter, M., Hochrein, H., and O'Keeffe, M. (2008). M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. Blood 111, 150-159.
Franchini, M., Hefti, H., Vollstedt, S., Glanzmann, B., Riesen, M., Ackermann, M., Chaplin, P., Shortman, K., and Suter, M. (2004). Dendritic cells from mice neonatally vaccinated with modified vaccinia virus Ankara transfer resistance against herpes simplex virus type I to naive one-week-old mice. J Immunol 172, 6304-6312.
Gilliet, M., Boonstra, A., Paturel, C., Antonenko, S., Xu, X.L., Trinchieri, G., O'Garra, A., and Liu, Y.J. (2002). The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. The Journal of experimental medicine 195, 953-958.
Ginhoux, F., Liu, K., Helft, J., Bogunovic, M., Greter, M., Hashimoto, D., Price, J., Yin, N., Bromberg, J., Lira, S.A., et al. (2009). The origin and development of nonlymphoid tissue CD103+ DCs. The Journal of experimental medicine 206, 3115-3130.
Ginhoux, F., Tacke, F., Angeli, V., Bogunovic, M., Loubeau, M., Dai, X.M., Stanley, E.R., Randolph, G.J., and Merad, M. (2006). Langerhans cells arise from monocytes in vivo. Nature immunology 7, 265-273.
Guermonprez, P., Helft, J., Claser, C., Deroubaix, S., Karanje, H., Gazumyan, A., Darasse-Jeze, G., Telerman, S.B., Breton, G., Schreiber, H.A., et al. (2013). Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nature medicine 19, 730-738.
Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745.
Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M. (1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. The Journal of experimental medicine 176, 1693-1702.
Jackson, S.H., Yu, C.R., Mahdi, R.M., Ebong, S., and Egwuagu, C.E. (2004). Dendritic Cell Maturation Requires STAT1 and Is under Feedback Regulation by Suppressors of Cytokine Signaling. The Journal of Immunology 172, 2307-2315.
Karsunky, H., Inlay, M.A., Serwold, T., Bhattacharya, D., and Weissman, I.L. (2008). Flk2+ common lymphoid progenitors possess equivalent differentiation potential for the B and T lineages. Blood 111, 5562-5570.
Karsunky, H., Merad, M., Cozzio, A., Weissman, I.L., and Manz, M.G. (2003). Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. The Journal of experimental medicine 198, 305-313.
Kondo, M., Weissman, I.L., and Akashi, K. (1997). Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661-672.
Lai, A.Y., Lin, S.M., and Kondo, M. (2005). Heterogeneity of Flt3-expressing multipotent progenitors in mouse bone marrow. J Immunol 175, 5016-5023.
Laouar, Y., Welte, T., Fu, X.Y., and Flavell, R.A. (2003). STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19, 903-912.
Lee, C.K., Raz, R., Gimeno, R., Gertner, R., Wistinghausen, B., Takeshita, K., DePinho, R.A., and Levy, D.E. (2002). STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17, 63-72.
Liu, Y.J. (2005). IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annual review of immunology 23, 275-306.
Maraskovsky, E., Brasel, K., Teepe, M., Roux, E.R., Lyman, S.D., Shortman, K., and McKenna, H.J. (1996). Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. The Journal of experimental medicine 184, 1953-1962.
Massberg, S., Schaerli, P., Knezevic-Maramica, I., Kollnberger, M., Tubo, N., Moseman, E.A., Huff, I.V., Junt, T., Wagers, A.J., Mazo, I.B., and von Andrian, U.H. (2007). Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994-1008.
McGettrick, A.F., and O'Neill, L.A. (2007). Toll-like receptors: key activators of leucocytes and regulator of haematopoiesis. British journal of haematology 139, 185-193.
McKenna, H.J., Stocking, K.L., Miller, R.E., Brasel, K., De Smedt, T., Maraskovsky, E., Maliszewski, C.R., Lynch, D.H., Smith, J., Pulendran, B., et al. (2000). Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489-3497.
Merad, M., and Manz, M.G. (2009). Dendritic cell homeostasis. Blood 113, 3418-3427.
Morrison, S.J., Wandycz, A.M., Hemmati, H.D., Wright, D.E., and Weissman, I.L. (1997). Identification of a lineage of multipotent hematopoietic progenitors. Development (Cambridge, England) 124, 1929-1939.
Nagai, Y., Garrett, K.P., Ohta, S., Bahrun, U., Kouro, T., Akira, S., Takatsu, K., and Kincade, P.W. (2006). Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24, 801-812.
O'Keeffe, M., Hochrein, H., Vremec, D., Caminschi, I., Miller, J.L., Anders, E.M., Wu, L., Lahoud, M.H., Henri, S., Scott, B., et al. (2002). Mouse Plasmacytoid Cells: Long-lived Cells, Heterogeneous in Surface Phenotype and Function, that Differentiate Into CD8+ Dendritic Cells Only after Microbial Stimulus. Journal of Experimental Medicine 196, 1307-1319.
Onai, N., Manz, M.G., and Schmid, M.A. (2010). Isolation of Common Dendritic Cell Progenitors (CDP) from Mouse Bone Marrow. Methods in Molecular Biology 595, 165-203.
Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G. (2007). Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature immunology 8, 1207-1216.
Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A., and Manz, M.G. (2006). Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. The Journal of experimental medicine 203, 227-238.
Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088.
Randall, T.D., and Weissman, I.L. (1998). Characterization of a population of cells in the bone marrow that phenotypically mimics hematopoietic stem cells: resting stem cells or mystery population? Stem cells (Dayton, Ohio) 16, 38-48.
Schmid, M.A., Takizawa, H., Baumjohann, D.R., Saito, Y., and Manz, M.G. (2011). Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes. Blood 118, 4829-4840.
Serbina, N.V., Salazar-Mather, T.P., Biron, C.A., Kuziel, W.A., and Pamer, E.G. (2003). TNF/iNOS-Producing Dendritic Cells Mediate Innate Immune Defense against Bacterial Infection. Immunity 19, 59-70.
Shortman, K., and Naik, S.H. (2007). Steady-state and inflammatory dendritic-cell development. Nature reviews. Immunology 7, 19-30.
Taieb, J., Chaput, N., Menard, C., Apetoh, L., Ullrich, E., Bonmort, M., Pequignot, M., Casares, N., Terme, M., Flament, C., et al. (2006). A novel dendritic cell subset involved in tumor immunosurveillance. Nature medicine 12, 214-219.
Takizawa, H., Boettcher, S., and Manz, M.G. (2012). Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119, 2991-3002.
Vremec, D., Lieschke, G.J., Dunn, A.R., Robb, L., Metcalf, D., and Shortman, K. (1997). The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. European journal of immunology 27, 40-44.
Watowich, S.S., and Liu, Y.-J. (2010). Mechanisms regulating DC specificiation and development. Immunological Reviews 238, 76-92.
Weissman, I.L. (2000). Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157-168.
Welner, R.S., Pelayo, R., Nagai, Y., Garrett, K.P., Wuest, T.R., Carr, D.J., Borghesi, L.A., Farrar, M.A., and Kincade, P.W. (2008). Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 112, 3753-3761.
Wright, D.E., Cheshier, S.H., Wagers, A.J., Randall, T.D., Christensen, J.L., and Weissman, I.L. (2001). Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood 97, 2278-2285.
Wu, L., and Liu, Y.J. (2007). Development of dendritic-cell lineages. Immunity 26, 741-750.
Yasmina Laouar, T.W., Xin-Yuan Fu, and Richard A. Flavell (2003). STAT3 Is Required for Flt3L-Dependent Dendritic Cell Differentiation. Cell 19, 903-912.
Zenke, M., and Hieronymus, T. (2006). Towards an understanding of the transcription factor network of dendritic cell development. Trends in immunology 27, 140-145.
Zhang, J., Raper, A., Sugita, N., Hingorani, R., Salio, M., Palmowski, M.J., Cerundolo, V., and Crocker, P.R. (2006). Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107, 3600-3608.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56180-
dc.description.abstract類鐸受體(Toll-like receptor)是先天性免疫中辨識細菌及病毒感染很重要的成員,而類鐸受體主要是表現在一些先天性免疫細胞上,像是巨噬細胞及樹突細胞。除此之外,在非免疫細胞上,像是上皮細胞也會表現此種受體。有趣的是造血前驅細胞上也表現這些類鐸受體,但是它表現在前驅細胞的功能仍舊未明。在過去的研究中,我們使用體外培養的方法,將分離共同淋巴前驅細胞(common lymphoid progenitor; CLP)和 Fms-like tyrosine-3 (Flt3) 配體 (Flt3 ligand, FL) 一起培養後,可以使 CLP 主要發育為漿狀樹突細胞(pDC),然而受到類鐸受體 9配體(TLR9 ligand) CpG ODN 刺激後, CLP 卻轉而發育為傳統樹突細胞 (conventional DC, cDC)。值得注意的是,單獨加入 CpG ODN 或是同時添加 FL 與 CpG ODN 會誘導一群特殊的樹突細胞,這群細胞會同時表現 CD11b 和 B220 和 CD11c 表面分子。這群 DPDC 的形態與特徵比較像是 cDC 而不像 pDC,且這群細胞在缺少 STAT1 或第一型干擾素受體後並不影響其生成,顯示第一型干擾素並沒有參與其發育。當把野生型 CLP 與 Tlr9-/- CLP 一起培養時,Tlr9-/- CLP 並無法發育成 cDC 與 DPDC,因此它們的發育應該是經由 TLR 9 訊息傳遞過程直接調控而非其誘發因子。此外,這群細胞在缺少 STAT3 後也不會形成,表示 STAT3 在 TLR 9 訊號傳遞過程會正向調控。綜合以上的結果,我們發現感染或發炎反應會改變原來樹突細胞發育過程,使得原本應該是促進 pDC 生成的,都變成促進 cDC 及 DPDC 的生成,或許這是提供先天免疫系統一個可能快速對抗感染的方式。zh_TW
dc.description.abstractToll-like receptors (TLRs) are one family of the pattern recognition receptors in the innate immunity to sense and response to microbial or viral infection. TLRs are expressed in innate immune cells, including macrophage and dendritic cells (DC) and non-immune cells such as epithelium in the gut and lung. Interestingly, TLRs also expressed in hematopoietic stem and progenitor cells (HSPCs). However, the roles of TLR response in HSPCs are largely unknown. We showed here that Flt3 ligand (FL) preferentially promoted pDC formation from common lymphoid progenitor (CLP), while TLR9 signaling promoted cDC differentiation. CpG ODN alone or CpG ODN plus FL, and not FL alone, also induced an unique DC population, which expressed both CD11b and B220 (double positive) other than CD11c. Interestingly, the morphology and phenotype of these DPDCs were more closer to those of cDCs and not to those of pDCs. The development of CpG-induced cDCs and DPDCs were not altered in the absence of STAT1, or IFNAR1, the type I interferon (IFN-I) receptor, suggesting that the process is IFN-I-independent. However, the effect of CpG ODN on DC development was dependent on direct TLR9 signaling pathway and not on TLR9-induced genes, as biased cDC development was impaired in Tlr9-/- CLPs when co-cultured with WT CLPs. Moreover, this effect was abolished in the absence of STAT3, suggesting that STAT3 might positively regulate TLR9-induced development of cDC and DPDC. These results suggest that inflammation-induced remodeling of DC population may provide a unique way for a rapid reaction of the innate immune system upon infection or inflammation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:18:00Z (GMT). No. of bitstreams: 1
ntu-103-R01449011-1.pdf: 3767714 bytes, checksum: 4ed1f0433ef4437aa4389766f753233e (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract iv
Abbreviation vi
Table of contents viii
Chapter I Introduction 1
1.1 DC subsets 2
1.2 DC development 3
1.3 Cytokines in DC development 4
1.4 The role of TLR expression on HSPCs 6
1.5 Circulation of HSPC. 7
1.6 Hematopoiesis in inflammatory conditions 7
1.7 Specific aims 8
Chapter II Materials and Methods 10
2.1 Mice 11
2.2 Isolation of cell populations and flow cytometry 11
2.3 In vitro DC culture 12
2.4 Flt3L preparation 12
2.5 Adoptive transfer and analysis of DC subtypes 13
2.6 Cytospin and staining 14
2.7 Statistical Analysis 14
2.8 Fluorescent antibodies 14
Chapter III Results 16
3.1 TLR9 response enhances cDC development and induces the generation of an unique CD11c+B220+ DCs from CLPs. 17
3.2 CpG is necessary for cDC and B220+CD11b+ cells developmental process at early stage. 17
3.3 To characterize the DC subsets from FL- or FL plus CpG-derived cells 18
3.4 CpG-stimulated development of DPDCs is IL-15-independent. 19
3.5 The effects of CpG on DC development from CLPs are IFN-I independent. 19
3.6 The effects of CpG on DC development are dependent on TLR9 signaling 20
3.7 CpG-triggerd cDC and DPDC developmental is STAT3-dependent. 21
3.8 CpG regulate DC development from CLP in vivo. 22
Chapter IV Discussion 24
4.1 HSPCs respond to TLR ligand and develop into cDC 25
4.2 The natures of TLR-induced cDC is dissimilar from FL-derived cDC 26
4.3 Impaired DCs development in Stat1-/- mice with upon FL stimulation 27
4.4 The detailed mechanisms of STAT3 involved in TLR9-dependent DC differentiation remain to be clarified 28
4.5 The functions of TLR-induced DCs need to be determined 29
Figures 30
References 55
dc.language.isoen
dc.subject發炎反應zh_TW
dc.subject活化訊號傳導與轉錄子三zh_TW
dc.subject類鐸受體zh_TW
dc.subject淋巴共同前驅細胞zh_TW
dc.subject樹突細胞發育zh_TW
dc.subjectSTAT3en
dc.subjectToll-like receptoren
dc.subjectCommon lymphoid progenitoren
dc.subjectDendritic cell developmenten
dc.subjectinflammationen
dc.title發炎反應對樹突細胞發育之影響zh_TW
dc.titleEffects of Inflammatory Response on
Dendritic Cell Development from CLPs
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林國儀(Kuo-I Lin),嚴仲陽(Jeffrey Jong-Young Yen)
dc.subject.keyword樹突細胞發育,發炎反應,淋巴共同前驅細胞,類鐸受體,活化訊號傳導與轉錄子三,zh_TW
dc.subject.keywordDendritic cell development,inflammation,Common lymphoid progenitor,Toll-like receptor,STAT3,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2014-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved