請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56174
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
dc.contributor.author | Kuan-Ling Huang | en |
dc.contributor.author | 黃冠翎 | zh_TW |
dc.date.accessioned | 2021-06-16T05:17:48Z | - |
dc.date.available | 2017-08-26 | |
dc.date.copyright | 2014-08-26 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-17 | |
dc.identifier.citation | [1] W. Lutz, W. Sanderson, and S. Scherbov, 'The coming acceleration of global population ageing,' Nature, vol. 451, pp. 716-719, 02/07/print 2008.
[2] N. A. Howlader N, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z,Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds), 'SEER Cancer Statistics Review, 1975-2011,,' M. National Cancer Institute. Bethesda, Ed., ed, 2013. [3] J. Hart, 'Addressing the Psychosocial Needs of Cancer Survivors,' Alternative and Complementary Therapies, vol. 13, pp. 183-186, August 27, 2007 August 2007. [4] M. Stanton, G. Franco, and R. Scoggins, 'Case management needs of older and elderly cancer survivors,' Prof Case Manag, vol. 17, pp. 61-9; quiz 70-1, Mar-Apr 2012. [5] A. Naeim and D. Reuben, 'Geriatric syndromes and assessment in older cancer patients,' Oncology (Williston Park), vol. 15, pp. 1567-77, 1580; discussion 1581, 1586, 1591, Dec 2001. [6] S. Stowe and S. Harding, 'Telecare, telehealth and telemedicine,' European Geriatric Medicine, vol. 1, pp. 193-197, 6// 2010. [7] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung, 'Body Area Networks: A Survey,' Mob. Netw. Appl., vol. 16, pp. 171-193, 2011. [8] H. Banaee, M. Ahmed, and A. Loutfi, 'Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges,' Sensors, vol. 13, pp. 17472-17500, 2013. [9] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, 'A review of wearable sensors and systems with application in rehabilitation,' Journal of neuroengineering and rehabilitation, vol. 9, p. 21, 2012. [10] M. Chan, D. Esteve, J.-Y. Fourniols, C. Escriba, and E. Campo, 'Smart wearable systems: Current status and future challenges,' Artificial intelligence in medicine, vol. 56, pp. 137-156, 2012. [11] . http://www.fitbit.com/. [12] 'http://www.ihealthlabs.com/.' [13] 'http://www.withings.com/eu/.' [14] R. Islam, S. I. Ahamed, N. Talukder, and I. Obermiller, Usability of mobile computing technologies to assist cancer patients: Springer, 2007. [15] T. F. Budinger, 'Biomonitoring with wireless communications,' Annu Rev Biomed Eng, vol. 5, pp. 383-412, 2003. [16] R. Antonicelli, P. Testarmata, L. Spazzafumo, C. Gagliardi, G. Bilo, M. Valentini, et al., 'Impact of telemonitoring at home on the management of elderly patients with congestive heart failure,' J Telemed Telecare, vol. 14, pp. 300-5, 2008. [17] M. F. Pimentel, D. Clifton, L. Clifton, P. Watkinson, and L. Tarassenko, 'Modelling physiological deterioration in post-operative patient vital-sign data,' Medical & Biological Engineering & Computing, vol. 51, pp. 869-877, 2013/08/01 2013. [18] L. Clifton, D. A. Clifton, P. J. Watkinson, and L. Tarassenko, 'Identification of patient deterioration in vital-sign data using one-class support vector machines,' in Computer Science and Information Systems (FedCSIS), 2011 Federated Conference on, 2011, pp. 125-131. [19] L. W. H. Lehman, S. Nemati, R. P. Adams, G. Moody, A. Malhotra, and R. G. Mark, 'Tracking progression of patient state of health in critical care using inferred shared dynamics in physiological time series,' in IEEE International Conference on Engineering in Medicine and Biology Society (EMBC), 2013, pp. 7072-7075. [20] D. Apiletti, E. Baralis, G. Bruno, and T. Cerquitelli, 'Real-Time Analysis of Physiological Data to Support Medical Applications,' IEEE Transactions on Information Technology in Biomedicine, vol. 13, pp. 313-321, 2009. [21] J. Wu, J. Roy, and W. F. Stewart, 'Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches,' Medical care, vol. 48, pp. S106-S113, 2010. [22] L. Rabiner and B. H. Juang, 'An introduction to hidden Markov models,' IEEE ASSP Magazine, vol. 3, pp. 4-16, 1986. [23] K. P. Murphy, 'Dynamic Bayesian Networks: Representation, Inference and Learning,' Ph.D. Dissertation, Computer Science Division, UC Berkeley, 2002. [24] K. Murphy. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.7714 [25] S. Y. Kim, S. Imoto, and S. Miyano, 'Inferring gene networks from time series microarray data using dynamic Bayesian networks,' Brief Bioinform, vol. 4, pp. 228-35, Sep 2003. [26] W. D. Dewys, C. Begg, P. T. Lavin, P. R. Band, J. M. Bennett, J. R. Bertino, et al., 'Prognostic effect of weight loss prior tochemotherapy in cancer patients,' The American Journal of Medicine, vol. 69, pp. 491-497, 10// 1980. [27] L. A. Marinho, O. Rettori, and A. N. Vieira-Matos, 'Body weight loss as an indicator of breast cancer recurrence,' Acta Oncol, vol. 40, pp. 832-7, 2001. [28] R. T. Chlebowski, E. Aiello, and A. McTiernan, 'Weight Loss in Breast Cancer Patient Management,' Journal of Clinical Oncology, vol. 20, pp. 1128-1143, February 15, 2002 2002. [29] M. K. Whiteman, S. D. Hillis, K. M. Curtis, J. A. McDonald, P. A. Wingo, and P. A. Marchbanks, 'Body mass and mortality after breast cancer diagnosis,' Cancer Epidemiol Biomarkers Prev, vol. 14, pp. 2009-14, Aug 2005. [30] 'Understanding Blood Pressure Readings,' vol. 7, ed. Heart Insight: American Heart Association, 2013, pp. 16-19. [31] G. T. Armstrong, K. C. Oeffinger, Y. Chen, T. Kawashima, Y. Yasui, W. Leisenring, et al., 'Modifiable Risk Factors and Major Cardiac Events Among Adult Survivors of Childhood Cancer,' Journal of Clinical Oncology, vol. 31, pp. 3673-3680, October 10, 2013 2013. [32] M. J. Hooning, A. Botma, B. M. P. Aleman, M. H. A. Baaijens, H. Bartelink, J. G. M. Klijn, et al., 'Long-Term Risk of Cardiovascular Disease in 10-Year Survivors of Breast Cancer,' Journal of the National Cancer Institute, vol. 99, pp. 365-375, March 7, 2007 2007. [33] J. Sztajzel, 'Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system,' Swiss Med Wkly, vol. 134, pp. 514-22, Sep 4 2004. [34] M. Malik, J. T. Bigger, A. J. Camm, R. E. Kleiger, A. Malliani, A. J. Moss, et al., 'Heart rate variability: Standards of measurement, physiological interpretation, and clinical use,' European Heart Journal, vol. 17, pp. 354-381, March 1, 1996 1996. [35] H.-C. Chen, C. C. Yang, T. B. Kuo, T.-P. Su, and P. Chou, 'Cardiac vagal control and theoretical models of co-occurring depression and anxiety: A cross-sectional psychophysiological study of community elderly,' BMC Psychiatry, vol. 12, p. 93, 2012. [36] E. Bruera, S. Chadwick, R. Fox, J. Hanson, and N. MacDonald, 'Study of cardiovascular autonomic insufficiency in advanced cancer patients,' Cancer Treat Rep, vol. 70, pp. 1383-7, Dec 1986. [37] C. Stone, R. A. Kenny, B. Nolan, and P. Lawlor, 'Autonomic dysfunction in patients with advanced cancer; prevalence, clinical correlates and challenges in assessment,' BMC Palliative Care, vol. 11, p. 3, 2012. [38] N. Fadul, F. Strasser, J. L. Palmer, S. W. Yusuf, Y. Guo, Z. Li, et al., 'The association between autonomic dysfunction and survival in male patients with advanced cancer: a preliminary report,' J Pain Symptom Manage, vol. 39, pp. 283-90, Feb 2010. [39] Y. Guo, J. L. Palmer, F. Strasser, S. W. Yusuf, and E. Bruera, 'Heart rate variability as a measure of autonomic dysfunction in men with advanced cancer,' Eur J Cancer Care (Engl), vol. 22, pp. 612-6, Sep 2013. [40] S. Suzuki, S. Toyabe, T. Moroda, T. Tada, A. Tsukahara, T. Iiai, et al., 'Circadian rhythm of leucocytes and lymphocyte subsets and its possible correlation with the function of the autonomic nervous system,' Clinical & Experimental Immunology, vol. 110, pp. 500-508, 1997. [41] B. L. Kasiske, J. J. Snyder, D. T. Gilbertson, and C. Wang, 'Cancer after kidney transplantation in the United States,' American Journal of Transplantation, vol. 4, pp. 905-913, 2004. [42] A. K. Abbas, A. H. Lichtman, and S. Pillai, Basic immunology: functions and disorders of the immune system: Elsevier Health Sciences, 2012. [43] L. Mire, K. Hollowood, D. Gray, C. Bordea, and F. Wojnarowska, 'Melanomas in renal transplant recipients,' British Journal of Dermatology, vol. 154, pp. 472-477, 2006. [44] J. I. Herrero, 'De novo malignancies following liver transplantation: impact and recommendations,' Liver Transplantation, vol. 15, pp. S90-S94, 2009. [45] G. A. Curt, W. Breitbart, D. Cella, J. E. Groopman, S. J. Horning, L. M. Itri, et al., 'Impact of Cancer-Related Fatigue on the Lives of Patients: New Findings From the Fatigue Coalition,' The Oncologist, vol. 5, pp. 353-360, October 1, 2000 2000. [46] J. E. Bower, P. A. Ganz, K. A. Desmond, J. H. Rowland, B. E. Meyerowitz, and T. R. Belin, 'Fatigue in breast cancer survivors: occurrence, correlates, and impact on quality of life,' J Clin Oncol, vol. 18, pp. 743-53, Feb 2000. [47] S. H. Kim, B. H. Son, S. Y. Hwang, W. Han, J.-H. Yang, S. Lee, et al., 'Fatigue and Depression in Disease-Free Breast Cancer Survivors: Prevalence, Correlates, and Association with Quality of Life,' Journal of Pain and Symptom Management, vol. 35, pp. 644-655, 6// 2008. [48] P. Stone, M. Richards, and J. Hardy, 'Fatigue in patients with cancer,' European Journal of Cancer, vol. 34, pp. 1670-1676, 10// 1998. [49] T. R. Mendoza, X. S. Wang, C. S. Cleeland, M. Morrissey, B. A. Johnson, J. K. Wendt, et al., 'The rapid assessment of fatigue severity in cancer patients,' Cancer, vol. 85, pp. 1186-1196, 1999. [50] 'World Health Survey 2002: individual questionnaire.,' Geneva: World Health Organization 2002. [51] J. E. Ware Jr, 'Standards for validating health measures: Definition and content,' Journal of Chronic Diseases, vol. 40, pp. 473-480, // 1987. [52] J. M. Mossey and E. Shapiro, 'Self-rated health: a predictor of mortality among the elderly,' American Journal of Public Health, vol. 72, pp. 800-808, 1982/08/01 1982. [53] J. Damian, R. Pastor-Barriuso, and E. Valderrama-Gama, 'Factors associated with self-rated health in older people living in institutions,' BMC Geriatrics, vol. 8, p. 5, 2008. [54] B. Shadbolt, J. Barresi, and P. Craft, 'Self-Rated Health as a Predictor of Survival Among Patients With Advanced Cancer,' Journal of Clinical Oncology, vol. 20, pp. 2514-2519, May 15, 2002 2002. [55] T. B. Ustun, S. Chatterji, N. Kostansjek, and J. Bickenbach, 'WHO’s ICF and functional status information in health records,' Health care financing review, vol. 24, pp. 77-88, 2003. [56] W. B. Applegate, J. P. Blass, and T. F. Williams, 'Instruments for the Functional Assessment of Older Patients,' New England Journal of Medicine, vol. 322, pp. 1207-1214, 1990. [57] N. K. Leidy, 'Functional status and the forward progress of merry-go-rounds: toward a coherent analytical framework,' Nurs Res, vol. 43, pp. 196-202, Jul-Aug 1994. [58] J. W. Kocks, G. M. Asijee, I. G. Tsiligianni, H. A. Kerstjens, and T. van der Molen, 'Functional status measurement in COPD: a review of available methods and their feasibility in primary care,' Prim Care Respir J, vol. 20, pp. 269-75, Sep 2011. [59] J. E. Ware, Jr., R. H. Brook, A. R. Davies, and K. N. Lohr, 'Choosing measures of health status for individuals in general populations,' Am J Public Health, vol. 71, pp. 620-5, Jun 1981. [60] M. Stommel, B. A. Given, and C. W. Given, 'Depression and functional status as predictors of death among cancer patients,' Cancer, vol. 94, pp. 2719-27, May 15 2002. [61] D. Nunan, G. R. Sandercock, and D. A. Brodie, 'A quantitative systematic review of normal values for short-term heart rate variability in healthy adults,' Pacing Clin Electrophysiol, vol. 33, pp. 1407-17, Nov 2010. [62] A. Voss, A. Heitmann, R. Schroeder, A. Peters, and S. Perz, 'Short-term heart rate variability--age dependence in healthy subjects,' Physiol Meas, vol. 33, pp. 1289-311, Aug 2012. [63] J. K. Vallance, K. S. Courneya, R. C. Plotnikoff, Y. Yasui, and J. R. Mackey, 'Randomized controlled trial of the effects of print materials and step pedometers on physical activity and quality of life in breast cancer survivors,' J Clin Oncol, vol. 25, pp. 2352-9, Jun 10 2007. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56174 | - |
dc.description.abstract | 由於醫療技術的發展與進步,患者罹患癌症接受化療或手術治療等的存活率大幅地提高,伴隨著人口高齡化,從癌症治療後存活的長者亦成了不可忽視的一個族群。根據研究,他們十分擔心癌症的復發,也屬於罹患老年疾病的高風險族群,比方說心血管疾病等老年病。因此對於癌症存活長者(以下簡稱年長癌友)而言,家中若擁有能初步評估整體健康情況的照護系統將可帶來許多幫助。然而目前的居家生理資訊量測系統,主要利用普遍的醫學標準來給予使用者警示,而缺少了針對年長癌友族群個人化的資料分析;而針對生理資訊進行風險分析的系統,藉由醫生診斷及病歷等多方資訊的輔助,他們可預測特定疾病的發生,但無法針對年長癌友做整體的健康評估。因此我們提出一套以年長癌友為中心之的健康監測與健康初估系統,且為了減輕使用上的負擔,年長癌友可在家中與行動裝置上之應用程式配合生理資訊量測器檢測其健康狀態;從多個生理訊號分析出對年長癌友必須特別注意的特徵資訊之後,我們提出的動態貝氏網路可以學習這些特徵隨時間的變化,並進一步對健康進行初步的評估。為了驗證此系統的有效性,我們邀請兩位曾罹患乳癌的年長癌友來使用本系統,進行約三週的生理資訊量測,而資料分析結果也顯示了,提出的動態貝氏網路模型可分析針對年長癌友相關聯之生理特徵變化有效地進行健康初估。 | zh_TW |
dc.description.abstract | Survival rate of cancer patient has recently been greatly raised due to the advances of clinical technology. With the aging population, elder people recovering from cancer ac-count for large portion in the society. According to the research literatures, elderly can-cer survivors (ECSs) are afraid of the cancer recurrence, and suffer from geriatric syn-dromes with high risk. Thus, there is an increasing need for ECSs to be aware of their health status at home environment. However, most of current home monitoring systems use common medical standard to identify the hazardous situation without referring to ESC-centric personalized data analysis. Besides, those vital-sign-based risk analysis systems are able to estimate the occurrence of certain disease since multivariate clinical information such as medical diagnosis and disease history are available, whereas they are cannot estimate the overall health status for ECSs. Therefore, in this thesis we propose an ECS-centric health monitoring and its preliminary estimating system. The underlying analysis technique of the system is to utilize dynamic Bayesian network (DBN) to esti-mate ECS’s preliminary health condition. Specifically, after relevant features are ex-tracted from vital sign of elders, the developed DBN is able to first learn the temporal pattern of those features under various corresponded health situation, and then further estimate their current preliminary health statuses (e.g. poor or good). To verify the plau-sibility of our proposed system, two elderly survivors with breast cancer history are in-vited to apply the system for about 3 weeks, and the analysis results show that the abil-ity of estimation and friendliness of our system are quite promising. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:17:48Z (GMT). No. of bitstreams: 1 ntu-103-R01922068-1.pdf: 3306801 bytes, checksum: 075611c63ef94047d6586477fa266462 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii Table of Contents iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Objectives and Contributions 3 1.3 Challenges 4 1.4 Related Work 7 1.4.1 Bio-Monitoring System 7 1.4.2 Risk Analysis for Vital Signs 9 1.5 Thesis Organization 11 Chapter 2 Backgrounds 12 2.1 Hidden Markov Model (HMM) 12 2.1.1 Basic Elements 14 2.1.2 Inference 16 2.1.1 Decoding 17 2.1.2 Learning the Model Parameters 18 2.2 Dynamic Bayesian Network 20 2.2.1 Representation 21 2.2.2 Learning 22 Chapter 3 Health Assessment Model 24 3.1 Overview 24 3.2 Physiological Factors that Cancer Survivors Should Notice 26 3.2.1 Weight 26 3.2.2 Blood Pressure 29 3.2.3 Heart Rate Variability 30 3.2.4 Fatigue 34 3.2.5 Self-rated Health (SRH) 35 3.2.6 Functional Status: Health Ground Truth 36 3.3 DBN Model for Health Assessment 38 3.3.1 Feature Extraction: Random Variable in DBN 38 3.3.2 DBN Structure 46 Chapter 4 System Evaluation 49 4.1 Vital Sign Monitoring Platform 49 4.2 Data Collection 56 4.3 Analysis 58 4.3.1 Trend of Feature Data 58 4.3.2 Performance of Health Estimation 61 Chapter 5 Conclusion 69 5.1 Summery 69 5.2 Future Work 70 REFERENCE 71 | |
dc.language.iso | en | |
dc.title | 以癌症存活癌症長者為中心之健康監測與初估系統 | zh_TW |
dc.title | Health Monitoring and Preliminary Estimation System for Elderly Cancer Survivors | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賴飛羆,陳錫中,蘇木春,廖峻鋒 | |
dc.subject.keyword | 生物資訊學,癌症存活長者,生理時間序列,動態貝氏網路,健康評估, | zh_TW |
dc.subject.keyword | Bioinformatics,Elderly cancer survivors,Physiological time series,Dynamic Bayesian networks,Health estimation, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-17 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。