Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56164
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡孟勳
dc.contributor.authorYi-Chen Yangen
dc.contributor.author楊依珍zh_TW
dc.date.accessioned2021-06-16T05:17:28Z-
dc.date.available2019-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-17
dc.identifier.citation1 Wang, Y., et al. (2010) Past, present and future applications of flow cytometry in aquatic microbiology. Trends in biotechnology 28, 416-424
2 Gruden, C., et al. (2004) Flow cytometry for microbial sensing in environmental sustainability applications: current status and future prospects. FEMS microbiology ecology 49, 37-49
3 Czechowska, K., et al. (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Current opinion in microbiology 11, 205-212
4 Jaye, D.L., et al. (2012) Translational applications of flow cytometry in clinical practice. J Immunol 188, 4715-4719
5 Vignali, D.A. (2000) Multiplexed particle-based flow cytometric assays. J Immunol Methods 243, 243-255
6 Kellar, K.L. and Iannone, M.A. (2002) Multiplexed microsphere-based flow cytometric assays. Experimental hematology 30, 1227-1237
7 Nolan, J.P. and Sklar, L.A. (2002) Suspension array technology: evolution of the flat-array paradigm. Trends in biotechnology 20, 9-12
8 Monneret, G. and Venet, F. (2012) Comment on 'Translational applications of flow cytometry in clinical practice'. J Immunol 189, 1099
9 Dunbar, S.A. (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363, 71-82
10 Miller, M.B. and Tang, Y.W. (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22, 611-633
11 Grange, J.M., et al. (1983) What is BCG? Tubercle 64, 129-139
12 Young, D.B. and Robertson, B.D. (1999) TB vaccines: global solutions for global problems. Science 284, 1479-1480
13 Ly, L.H. and McMurray, D.N. (2008) Tuberculosis: vaccines in the pipeline. Expert review of vaccines 7, 635-650
14 Gheorghiu, M. and Lagrange, P.H. (1983) Viability, heat stability and immunogenicity of four BCG vaccines prepared from four different BCG strains. Annales de l'Institut Pasteur. Immunologie 134, 125-147
15 Milstien, J.B. and Gibson, J.J. (1990) Quality control of BCG vaccine by WHO: a review of factors that may influence vaccine effectiveness and safety. Bull World Health Organ 68, 93-108
16 Lawhorn, C., et al. (2013) Genetic diversity and linkage disequilibrium in the chemokine receptor CCR2-CCR5 region among individuals and populations. Cytokine 64, 571-576
17 Lewin, A. and Sharbati-Tehrani, S. (2005) [Slow growth rate of mycobacteria. Possible reasons and significance for their pathogenicity]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 48, 1390-1399
18 Askgaard, D.S., et al. (1995) Firefly luciferase assay of adenosine triphosphate as a tool of quantitation of the viability of BCG vaccines. Biologicals 23, 55-60
19 Kairo, S.K., et al. (1999) Development of a tetrazolium salt assay for rapid determination of viability of BCG vaccines. Vaccine 17, 2423-2428
20 Sven, H., et al. (1999) Improved extraction and assay of mycobacterial ATP for rapid drug susceptibility testing. Luminescence 14, 255-261
21 Ho, M.M., et al. (2005) Report on a WHO consultation on the characterisation of BCG vaccines, WHO, Geneva, Switzerland 8-9 Dec 2004. Vaccine 23, 5700-5704
22 Li, R.C., et al. (1996) Novel method for assessing postantibiotic effect by using the Coulter counter. Antimicrob. Agents Chemother. 40, 1751-1753
23 Diaper, J.P., et al. (1992) Rapid assessment of bacterial viability by flow cytometry. Appl Microbiol Biotechnol 38, 268-272
24 Caron, G.N.-v., et al. (1998) Assessment of bacterial viability status by flow cytometry and single cell sorting. Journal of Applied Microbiology 84, 988-998
25 Keer, J.T. and Birch, L. (2003) Molecular methods for the assessment of bacterial viability. Journal of Microbiological Methods 53, 175-183
26 Williams, I., et al. (1999) Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture. Microbiology 145, 1325-1333
27 Lopez-Amoros, R., et al. (1995) Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propidium iodide, and oxonol. Appl Environ Microbiol 61, 2521-2526
28 Bunthof, C.J., et al. (1999) Rapid fluorescence assessment of the viability of stressed Lactococcus lactis. Appl Environ Microbiol 65, 3681-3689
29 Norden, M.A., et al. (1995) Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry. J Clin Microbiol 33, 1231-1237
30 Virta, M., et al. (1998) Determination of complement-mediated killing of bacteria by viability staining and bioluminescence. Appl Environ Microbiol 64, 515-519
31 Cunningham, A.F. and Spreadbury, C.L. (1998) Mycobacterial Stationary Phase Induced by Low Oxygen Tension: Cell Wall Thickening and Localization of the 16-Kilodalton alpha -Crystallin Homolog. J. Bacteriol. 180, 801-808
32 Meyers, P.R., et al. (1998) Novel method for rapid measurement of growth of mycobacteria in detergent-free media. J Clin Microbiol 36, 2752-2754
33 Smeulders, M.J., et al. (1999) Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol 181, 270-283
34 Zaborina, O., et al. (1999) Secretion of ATP-utilizing enzymes, nucleoside diphosphate kinase and ATPase, by Mycobacterium bovis BCG: sequestration of ATP from macrophage P2Z receptors? Mol Microbiol 31, 1333-1343
35 Zhang, A. and Groves, M.J. (1988) Size characterization of Mycobacterium bovis BCG (Bacillus Calmette Guerin) vaccine, Tice substrain. Pharm Res 5, 607-610
36 Bostan, N. and Mahmood, T. (2010) An overview about hepatitis C: a devastating virus. Crit Rev Microbiol 36, 91-133
37 Choo, Q.L., et al. (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-362
38 Simmonds, P. (2004) Genetic diversity and evolution of hepatitis C virus--15 years on. J Gen Virol 85, 3173-3188
39 Simmonds, P., et al. (2005) Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42, 962-973
40 Zein, N.N. (2000) Clinical significance of hepatitis C virus genotypes. Clin Microbiol Rev 13, 223-235
41 Kao, J.H., et al. (1995) Genotypes of hepatitis C virus in Taiwan and the progression of liver disease. J Clin Gastroenterol 21, 233-237
42 Lee, C.M., et al. (2006) Viral etiology of hepatocellular carcinoma and HCV genotypes in Taiwan. Intervirology 49, 76-81
43 Sun, C.A., et al. (2003) Incidence and cofactors of hepatitis C virus-related hepatocellular carcinoma: a prospective study of 12,008 men in Taiwan. American journal of epidemiology 157, 674-682
44 Amoroso, P., et al. (1998) Correlation between virus genotype and chronicity rate in acute hepatitis C. J Hepatol 28, 939-944
45 Larsen, C., et al. (2010) Hepatitis C virus genotype 3 and the risk of severe liver disease in a large population of drug users in France. J Med Virol 82, 1647-1654
46 Chevaliez, S. and Pawlotsky, J.M. (2009) How to use virological tools for optimal management of chronic hepatitis C. Liver Int 29 Suppl 1, 9-14
47 Chevaliez, S. (2011) Virological tools to diagnose and monitor hepatitis C virus infection. Clin Microbiol Infect 17, 116-121
48 Ghany, M.G., et al. (2009) Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 49, 1335-1374
49 Ghany, M.G., et al. (2011) An update on treatment of genotype 1 chronic hepatitis C virus infection: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 54, 1433-1444
50 EASL (2011) EASL Clinical Practice Guidelines: management of hepatitis C virus infection. J Hepatol 55, 245-264
51 EASL (2014) EASL Recommendations on Treatment of Hepatitis C 2014. J Hepatol 61, 373-395
52 Au, J.S. and Pockros, P.J. (2014) Novel therapeutic approaches for hepatitis C. Clin Pharmacol Ther 95, 78-88
53 Al Olaby, R.R. and Azzazy, H.M. (2011) Hepatitis C virus RNA assays: current and emerging technologies and their clinical applications. Expert Rev Mol Diagn 11, 53-64
54 Weck, K. (2005) Molecular methods of hepatitis C genotyping. Expert Rev Mol Diagn 5, 507-520
55 Bartholomeusz, A. and Schaefer, S. (2004) Hepatitis B virus genotypes: comparison of genotyping methods. Rev Med Virol 14, 3-16
56 Nakao, T., et al. (1991) Typing of hepatitis C virus genomes by restriction fragment length polymorphism. J Gen Virol 72 ( Pt 9), 2105-2112
57 Akhras, M.S., et al. (2007) PathogenMip assay: a multiplex pathogen detection assay. PLoS One 2, e223
58 Martro, E., et al. (2008) Evaluation of a new assay in comparison with reverse hybridization and sequencing methods for hepatitis C virus genotyping targeting both 5' noncoding and nonstructural 5b genomic regions. J Clin Microbiol 46, 192-197
59 Scott, J.D. and Gretch, D.R. (2007) Molecular diagnostics of hepatitis C virus infection: a systematic review. JAMA 297, 724-732
60 Molenkamp, R., et al. (2009) Identification of two Hepatitis C Virus isolates that failed genotyping by Versant LiPA 2.0 assay. J Clin Virol 44, 250-253
61 Gryadunov, D., et al. (2010) Hepatitis C virus genotyping using an oligonucleotide microarray based on the NS5B sequence. J Clin Microbiol 48, 3910-3917
62 Deshpande, A. and White, P.S. (2012) Multiplexed nucleic acid-based assays for molecular diagnostics of human disease. Expert Rev Mol Diagn 12, 645-659
63 Hong, S.K., et al. (2012) Evaluation of two hepatitis C virus genotyping assays based on the 5' untranslated region (UTR): the limitations of 5' UTR-based assays and the need for a supplementary sequencing-based approach. J Clin Microbiol 50, 3741-3743
64 Fu, Y., et al. (2011) New trends of HCV infection in China revealed by genetic analysis of viral sequences determined from first-time volunteer blood donors. J Viral Hepat 18, 42-52
65 Lee, Y.M., et al. (2010) Molecular epidemiology of HCV genotypes among injection drug users in Taiwan: Full-length sequences of two new subtype 6w strains and a recombinant form_2b6w. J Med Virol 82, 57-68
66 Chao, D.T., et al. (2011) Systematic review: epidemiology of hepatitis C genotype 6 and its management. Alimentary pharmacology & therapeutics 34, 286-296
67 Yu, M.L. and Chuang, W.L. (2009) Treatment of chronic hepatitis C in Asia: when East meets West. J Gastroenterol Hepatol 24, 336-345
68 Ross, R.S., et al. (2007) Genotyping of hepatitis C virus isolates by a new line probe assay using sequence information from both the 5'untranslated and the core regions. J Virol Methods 143, 153-160
69 Preston, F.E., et al. (1995) Heterogeneity of hepatitis C virus genotypes in hemophilia: relationship with chronic liver disease. Blood 85, 1259-1262
70 Pham, S.T., et al. (2010) Frequent multiple hepatitis C virus infections among injection drug users in a prison setting. Hepatology 52, 1564-1572
71 Kao, J.H., et al. (1994) Mixed infections of hepatitis C virus as a factor in acute exacerbations of chronic type C hepatitis. J Infect Dis 170, 1128-1133
72 Bowden, S., et al. (2005) Detection of multiple hepatitis C virus genotypes in a cohort of injecting drug users. J Viral Hepat 12, 322-324
73 Buckton, A.J., et al. (2006) Multitypic hepatitis C virus infection identified by real-time nucleotide sequencing of minority genotypes. J Clin Microbiol 44, 2779-2784
74 Hu, Y.W., et al. (2000) Comparison and application of a novel genotyping method, semiautomated primer-specific and mispair extension analysis, and four other genotyping assays for detection of hepatitis C virus mixed-genotype infections. J Clin Microbiol 38, 2807-2813
75 Soriano, V., et al. (2006) Management of chronic hepatitis B and C in HIV-coinfected patients. J Antimicrob Chemother 57, 815-818
76 Koziel, M.J. and Peters, M.G. (2007) Viral hepatitis in HIV infection. N Engl J Med 356, 1445-1454
77 Ghany, M.G., et al. (2009) Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 49, 1335-1374
78 Duarte, C.A., et al. (2010) A novel hepatitis C virus genotyping method based on liquid microarray. PLoS One 5
79 Hajian-Tilaki, K. (2013) Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian journal of internal medicine 4, 627-635
80 Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science 240, 1285-1293
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56164-
dc.description.abstract許多傳統的生物製劑效價試驗與臨床診斷分析方法,如用於減毒活菌疫苗效價試驗之培養後計算菌落數的方法,或是用於病毒基因分型的直接定序法,均相當耗時費力,甚至部份方法需要以肉眼判讀,因此結果易因操作人員不同而有差異。鑒於快速或多重檢測目標物之新興生物技術平台逐漸普遍,我們因此嘗試應用新興生物技術來改善傳統生物製劑效價試驗及病毒分型檢測平台。
卡介苗是由減毒的牛結核分枝桿菌(Mycobacterium bovis) 製備而成的活菌疫苗,傳統的效價分析方法是將疫苗復溶培養後以肉眼判讀菌落數,然而牛結核分枝桿菌生長極為緩慢,約需培養4週才能評估其效價,且判讀結果可能有人為差異存在。因此我們建立了快速準確且可信賴之卡介苗效價評估方法,結果顯示利用該方法於4小時內所得之效價結果與傳統方法所得結果相當一致。
此外,目前C型肝炎病毒 (hepatitis C virus, HCV) 有6種基因型,由於病毒基因型最近被納入C型肝炎治療指引中,顯示其在C型肝炎治療中扮演重要角色,然而目前現行的病毒基因分型方法多無法自同一混合基因型檢體中同時檢測出兩種基因型。為能在同一檢體中檢測不同基因型,我們利用懸浮微珠系統來同步檢測,所建立的HCV基因分型方法能在同一檢體中正確檢測出兩種HCV基因型,且能自HCV/HIV 混合檢體中正確檢測出HCV基因型,極具潛力成為快速準確且可信賴之HCV基因分型方法。
這些研究成果顯示我們應用新興生物技術改善傳統生物製劑效價及病毒分型檢測平台之之策略相當成功,未來仍將能持續應用新興生物技術來改善傳統生物製劑效價及病毒分型檢測平台。
zh_TW
dc.description.abstractMost of the traditional assay used for biologics evaluation & clinical diagnosis, such as direct culturing and counting Colony-Forming Unit (CFU) for potency assay of live attenuated vaccine or direct sequencing for virus genotyping are labor-intensive or time-consuming, and depend upon visual read-out of the image, which may cause different results due to different operators. Since the novel techniques for rapid or multiplexing detection are getting more popular, we therefore tried to improve the potency assay for biologics evaluation and the virus genotyping detection assay using the novel biotechniques.
The Bacille Calmette-Guerin (BCG) vaccine is a live attenuated vaccine prepared from a strain of Mycobacterium bovis. The conventional method to determine the potency of the BCG vaccine is to count the number of colony forming units (CFU). However, M. bovis is a slow growing organism and it takes at least four weeks incubation for the potency assay. The results of the potency assay could also vary due to manual counting. Therefore, we developed a rapid and reliable method to determine the potency of M. bovis BCG. The total handing time of the assay is only 4 hours and the results showed a very good agreement with the results from conventional CFU method.
In addition, there are more than six different genotypes of hepatitis C virus (HCV) around the world and they play an important role in the treatment of Hepatitis C patients. However, most of the current genotyping methods are unable to detect mixed genotypes from two or more HCV infections. In order to detect different HCV genotypes in a sample, we applied suspension bead array technology to identify HCV genotypes simultaneously. The assay is capable to detect two different HCV genotypes within a sample and identify HCV in HCV/HIV mixed samples. The features of rapid and reliable make this assay became a potential genotyping method for HCV genotyping in the future.
Our studies demonstrate that the novel biotechniques can improve the potency assay for biologics evaluation and the virus genotyping assay. Therefore, improvement strategies utilizing novel biotechniques for virus genotyping and biologics’ potency measurement could be constantly applied in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:17:28Z (GMT). No. of bitstreams: 1
ntu-103-D96642007-1.pdf: 5084269 bytes, checksum: abb691d1c43ee9ea61f5028773005bc7 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審訂書 I
ABSTRACT II
中文摘要 IV
CONTENTS V
LIST OF TABLES VIII
LIST OF FIGURES IX
ABBREVIATIONS XI
CHAPTER 1: LITERATURE REVIEW 1
1. NOVEL BIOTECHNIQUES 2
1.1. FLOW CYTOMETRY 2
1.2. LIQUID MICROARRAY 4
SIGNIFICANE 8
CHAPTER 2: DETERMINE THE POTENCY ASSAY OF BCG VACCINES BY FLOW CYTOMETER 14
1. INTRODUCTION 15
1.1. A BRIEF INTRODUCTION OF BCG VACCINE 15
1.2. THE ASSAYS USED FOR POTENCY EVALUATION OF BCG VACCINE 15
1.3. PROPOSED CONCEPT 16
1.4. FLOW CHART OF THE STUDY 17
2. RESULTS AND DISCUSSION 18
2.1. DETERMINE THE VIABILITY OF BCG BY FLOW CYTOMETRY 18
2.2. EVALUATE THE BCG RECOVERING TIME 19
2.3. EVALUATE THE SUITABILITY OF THE VIABLE COUNT METHODS 19
2.4. A COMPARATIVE STUDY OF POTENCY ASSAY FOR BCG VACCINE 20
3. CONCLUSION 21
4. MATERIALS AND METHODS 22
4.1. BCG VACCINE 22
4.2. DETERMINE THE VIABILITY OF BCG BY FLOW CYTOMETRY 22
4.3. GROWTH OF M. BOVIS BCG 23
4.4. DETERMINE THE VIABLE COUNTS OF BCG 23
4.5. STATISTICAL ANALYSIS 24
CHAPTER 3: DEVELOPMENT OF A RELIABLE MULTIPLEX GENOTYPING ASSAY FOR HCV USING A SUSPENSION BEAD ARRAY 34
1. INTRODUCTION 35
1.1. A BRIEF INTRODUCTION OF HCV 35
1.2. HCV GENOTYPE AND DISEASE SEVERITY 36
1.3. HCV GENOTYPE AND ANTI-VIRAL THERAPY 36
1.4. THE TRADITIONAL ASSAYS USED FOR HCV GENOTYPING 38
1.5. PROPOSED CONCEPT 41
1.6. FLOW CHART OF THE STUDY 42
2. RESULTS 42
2.1. THE GENOTYPE-SPECIFIC TSPS DESIGNED FOR THE HCV GENOTYPING ARRAY 42
2.2. SENSITIVITY AND SPECIFICITY OF THE HCV GENOTYPING ARRAY 44
2.3. CLINICAL EVALUATION OF THE HCV GENOTYPING ARRAY 45
3. DISCUSSION 46
4. MATERIALS AND METHODS 53
4.1. PRIMERS AND TARGET-SPECIFIC PRIMERS (TSPS) DESIGN 53
4.2. HCV GENOTYPING ARRAY PROTOCOL 53
4.3. TESTING THE GENOTYPE-SPECIFIC TSPS USING SYNTHESIZED HCV GENOTYPE PLASMIDS 55
4.4. SENSITIVITY AND SPECIFICITY EVALUATION 56
4.5. CLINICAL EVALUATION 56
CHAPTER 4: REFERENCES 75
APPENDIX: CURRICULUM VITAE 84
APPENDIX: PUBLICATIONS 88
dc.language.isoen
dc.subject基因分型方法zh_TW
dc.subject流式細胞儀zh_TW
dc.subjectC型肝炎病毒zh_TW
dc.subject懸浮微珠偵測系統zh_TW
dc.subject效價試驗zh_TW
dc.subject卡介苗zh_TW
dc.subjectgenotyping assayen
dc.subjectBCGen
dc.subjectPotency assayen
dc.subjectsuspension bead arrayen
dc.subjectHepatitis C virus (HCV)en
dc.subjectFlow cytometeren
dc.title應用新興生物技術改善BCG疫苗效價試驗及HCV基因分型檢測平台zh_TW
dc.titleImprove the potency assay for BCG vaccine and HCV genotyping assay by novel biotechniquesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee李宣書,楊志元,賴亮全,李宜靜
dc.subject.keyword流式細胞儀,卡介苗,效價試驗,懸浮微珠偵測系統,C型肝炎病毒,基因分型方法,zh_TW
dc.subject.keywordFlow cytometer,BCG,Potency assay,suspension bead array,Hepatitis C virus (HCV),genotyping assay,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2014-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved