請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56161完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳景然(Ching-Jan Chen) | |
| dc.contributor.author | Cheng-Yang Hong | en |
| dc.contributor.author | 洪承洋 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:17:22Z | - |
| dc.date.available | 2020-08-04 | |
| dc.date.copyright | 2020-08-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-29 | |
| dc.identifier.citation | [1] S. Bari, Q. Li, and F. C. Lee, “A New Current Mode Control for Higher Noise Immunity and Faster Transient Response in Multi-phase Operation” in Proc. IEEE ECCE, 2015, pp. 2078-2083. [2] R. B. Ridley, “A New Continuous-Time Model for Current-Mode Control with Constant Frequency, Constant On-Time, and Constant Off-Time, in CCM and DCM,” in Proc. IEEE PESC, 1990, pp. 382- 389. [3] J. Li, “Current-Mode Control: Modeling and its Digital Application,” Ph. D. Dissertation, Virginia Tech, 2009. [4] R. Redl and J. Sun, “Ripple-Based Control of Switching Regulators – An Overview,” IEEE Trans. Power Electron., vol. 24, no.12, pp. 2669-2680, Dec. 2009. [5] S. Bari, Q. Li, and F. C. Lee, “A New Current Mode Constant On-Time Control with Ultrafast Load Transient Response” in Proc. IEEE APEC, 2016, pp. 3259-3265. [6] P. Liu, Y. Yan, F. C. Lee and P. Mattavelli, 'Universal Compensation Ramp Auto-Tuning Technique for Current Mode Controls of Switching Converters,' in IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 970-974, Feb. 2018. [7] L. Cheng and W. Ki, ' A 30MHz Hybrid Buck Converter with 36mV Droop and 125ns 1% Settling Time for a 1.25A/2ns Load Transient,' 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 188-189. [8] S. Huang, K. Fang, Y. Huang, S. Chien and T. Kuo, ' Capacitor-Current-Sensor Calibration Technique and Application in a 4-phase Buck Converter with Load-Transient Optimization,' 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 228-229. [9] S. J. Kim, R. K. Nandwana, Q. Khan, R. Pilawa-Podgurski and P. K. Hanumolu, ' A 1.8V 30-to-70MHz 87% Peak-Efficiency 0.32mm2 4-phase Time-Based Buck Converter Consuming 3μA/MHz Quiescent Current in 65nm CMOS,' 2015 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2015, pp. 1-3. [10] C. Huang and P. K. T. Mok, 'A 100 MHz 82.4% Efficiency Package-Bondwire Based Four-Phase Fully-Integrated Buck Converter with Flying Capacitor for Area Reduction,' in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 2977-2988, Dec. 2013. [11] B. Lee, M. K. Song, A. Maity and D. B. Ma, ' A 25MHz 4-phase SAW Hysteretic DC-DC Converter with 1-cycle APC Achieving 190ns Tsettle to 4A Load Transient and above 80% Efficiency in 96.7% of the Power Range,' 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 190-191. [12] M. Choi, C. Kye, J. Oh, M. Choo and D. Jeong, ' A Synthesizable Digital AOT 4-Phase Buck Voltage Regulator for Digital Systems with 0.0054mm2 Controller and 80ns Recovery Time,' 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 432-434. [13] W. Huang, 'A New Control for Multi-phase Buck Converter with Fast Transient Response,' APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition. [14] Y. Su, W. Chen, Y. Huang, Y. Lee, K. Chen and H. Luo, 'Pseudo-Ramp Current Balance (PRCB) Technique With Offset Cancellation Control (OCC) in Dual-Phase DC-DC Buck Converter,' in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2192-2205, Oct. 2014. [15] S. Tian, F. C. Lee, Q. Li, J. Li, and P. Liu, “Equivalent Circuit Model of Constant On-time Current Mode Control with External Ramp Compensation,” in Proc. IEEE ECCE’14, pp. 3747-3754. [16] K. Cheng, F. Yu, Y. Yan, and F. C. Lee, “Analysis of Multi-phase Hybrid Ripple-Based Adaptive On-time Control for Voltage Regulator Modules,” in Proc. IEEE APEC’12 Conf., pp. 1088−1095. [17] B. Sahu, “Analysis and Design of a Fully-Integrated Current Sharing Scheme for Multi-phase Adaptive On-Time Modulated Switching Regulators,” in Proc. IEEE PESC’08 Conf., pp. 3829-3835. [18] P. Liu, F. C. Lee and Q. Li, 'Hybrid Interleaving with Adaptive PLL Loop for Adaptive On-Time Controlled Switching Converters,' 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 4110-4117. [19] K. Lee, F. C. Lee and M. Xu, 'A Hysteretic Control Method for Multiphase Voltage Regulator,' in IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2726-2734, Dec. 2009. [20] Texas Instruments, “TPS51650A Datasheet: Dual-Channel (3-Phase CPU/1-Phase GPU) SVID, D-CAP+TM Step-Down Controllers for IMVP-7 VCORE with Two Integrated Drivers,” www.ti.com. [21] Y. Roh, Y. Moon, J. Park, M. Jeong and C. Yoo, 'A Multiphase Synchronous Buck Converter with a Fully Integrated Current Balancing Scheme,' in IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 5159-5169, Sept. 2015. [22] M. Tsai, D. Chen, C. Chen, C. Chiu and W. Chang, 'Modeling and Design of Current Balancing Control in Voltage-Mode Multiphase Interleaved Voltage Regulators,' The 2010 International Power Electronics Conference - ECCE ASIA -, Sapporo, 2010, pp. 881-887. [23] C. Cheng, J. Huang, and C. Li, “Circuit and Methods for constant on-time control for an interleaved multiphase voltage regulator,” U.S. Patent, no. US 8159197 B2, Apr. 2012. [24] K. D. T. Ngo, S. K. Mishra and M. Walters, 'Synthetic-Ripple Modulator for Synchronous Buck Converter,' in IEEE Power Electronics Letters, vol. 3, no. 4, pp. 148-151, Dec. 2005. [25] Y. Huang and C. Cheung, 'Small Signal Modeling of the Hysteretic Modulator with a Current Ripple Synthesizer,' 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016, pp. 1616-1623. [26] S. Lee et al., ' A 0.518mm2 Quasi-Current-Mode Hysteretic Buck DC-DC Converter with 3μs Load Transient Response in 0.35μm BCDMOS,' 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3. [27] C. F. Lee and P. K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004. [28] W. Chen, J. Chen, T. Liang, L. Wei, J. Huang and W. Ting, 'A Novel Quick Response of RBCOT With VIC Ripple for Buck Converter,' in IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4299-4307, Sept. 2013. [29] W. Chen et al., 'Pseudo-Constant Switching Frequency in On-Time Controlled Buck Converter with Predicting Correction Techniques,' in IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3650-3662, May 2016. [30] P. Zumel, C. Fernández, A. de Castro and O. García, 'Efficiency Improvement in Multiphase Converter by Changing Dynamically the Number of Phases,' 2006 37th IEEE Power Electronics Specialists Conference, Jeju, 2006, pp. 1-6. [31] Rayachoti, Anagha, 'Improved Phase Shedding Technique in a Multiphase Converter System' (2014). http://scholarsmine.mst.edu/masters_theses/7272. [32] DA9217/DA9220, Datasheet, Dialog Semiconductor. [33] PCB Layout Techniques of Buck Converter, Application Note, Rohm Semiconductor. [34] RD0004 datasheet, “Richtek Load Transient Tool User Manual,” Dec. 2016, Available on http://www.richtek.com. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56161 | - |
| dc.description.abstract | 由於現代可攜式行動裝置晶片的進步,對於電源管理IC的要求也越來越嚴格,處理器瞬間負載電流變化導致較大的輸出電壓下降,因此,微處理器的電壓調整器(VRs)必須提供超快速的暫態響應,以減少大量的輸出電容。多相位固定導通時間(COT)控制降壓轉換器具有高電流驅動能力、快速暫態響應、較佳的輕載效率和低輸出電壓漣波而被廣泛應用於高負載迴轉率之系統供電,本論文提出許多技術實現高切換頻率雙相位COT控制降壓轉換器。 由於固定導通時間控制法為非固定切換頻率操作,因此在多相位操作中相位交錯技術是很關鍵的,本論文提出基於轉導斜波的相位交錯技術,當負載電流發生瞬變時,所提出之技術可立即自動開啟兩相位操作以恢復輸出能量損失,無需任何使用者預設之臨界電壓,暫態期間兩相位導通時間線性重疊以減少輸出電壓下降和輸出電容要求。 多相位操作時並聯的相位之間會平均分配負載電流,但是由於元件之間的不匹配以及轉換器的佈局或擺放位置的不對稱性,相位之間的電流可能會大不相同,因此,本論文提出一個基於取樣原理的平均電流均衡機制來達成精準的相位電流平衡;此外,採用適應性擴展導通時間機制來克服由寄生電阻引起之切換頻率偏移;最後,本論文提出一種自動相位增減技術,相位增減控制電路可根據負載需求自動開啟或關閉工作相位數目,透過改變相位數目顯著地提升輕載時轉換器之效率。 綜合上面所述,本文提出之降壓轉換器可實現快速的暫態響應、準確的相位電流平衡、達到較佳的輕載效率並有效減少切換頻率偏移,本文提出之控制架構採用0.18 µm CMOS 製程實現積體電路,具有12 M赫茲高速切換頻率,可達成負載電流發生瞬變時自動開啟兩相位操作。晶片量測結果在1安培負載電流以迴轉率1 A/µs變化下,轉換器能夠在0.6 µs範圍內調節輸出電壓回穩態值,且電壓下降不超過50 m伏特,硬體量測切換波型用以驗證本論文所提出之技術,且主要技術皆會在本論文中被詳細討論。 | zh_TW |
| dc.description.abstract | With the advancement of modern mobile chip and portable devices, the requirements for power management integrated circuits (PMICs) are more stringent. The processor consumes large dynamic current with ultra-fast slew rate and cause large output voltage (VOUT) droops. Therefore, the voltage regulators (VRs) for microprocessors must provide ultra-fast transient response to reduce the bulky output capacitors. The multiphase constant-on time (COT) controlled buck converter is widely used in high slew rate load powering due to its high current-driving capability, fast transient response, better light load efficiency and low output ripple. The thesis adopts several techniques to realize high switching frequency dual phase buck converter with fast transient response. Since the naturally non-constant frequency modulation behavior of COT control, the phase interleaved topology is the crucial part in multiphase operation. The thesis performs a gm-ramped phase-interleaving method. When load transient occurs, the proposed technique can automatically turn on two phases immediately to recover the energy loss without any user predefined load transient threshold voltage. Two-phases on-time periods linearly overlap to reduce the output voltage deviation and output capacitance requirement. Multiphase operation is desired to distribute the load current among paralleled phases. However, because of component mismatch, as well as asymmetric layout or position of converters, their phase currents might be significantly different. Therefore, the thesis proposes a sample and hold based current balancing method to achieve phase current-balancing. Besides, an adaptive-extended on-time control (AETC) mechanism is adopted to overcome the steady state switching frequency variation caused by parasitic resistances. Lastly, the thesis presents an auto phase shedding and adding mechanism. The phase shedding control circuit can automatically enable or disable the operating phase based on the load demand. The technique can substantially improve light load efficiency by phase number change. As a conclusion, this control scheme achieves fast transient response, accurate phase current-balancing, better light load efficiency and mitigate the switching frequency deviation. The proposed circuit is fabricated in 0.18-µm CMOS process with 12 MHz high switching frequency. The measurement results show that, during 1 A load current step changes with 1 A/µs slew rate, the converter is able to regulate the output voltage within 0.6 µs with less than 50 mV undershoot. Experimental switching waveforms are shown to support the described techniques and analysis and major features are also discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:17:22Z (GMT). No. of bitstreams: 1 U0001-2707202020324300.pdf: 5684953 bytes, checksum: 4332c7ca8dbcc1999c1337cbaae55079 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Acknowledgements II 中文摘要 IV Abstract VI Table of Contents VIII List of Figures XI List of Tables XVI Chapter 1 Introduction 1 1.1 Background: Voltage Regulators for Portable Device Microprocessors 1 1.2 Introduction of Constant On-Time Control Operation 2 1.2.1 Constant On-Time Control Circuit Diagram 2 1.2.2 Characteristics of Constant On-Time Control 3 1.3 Advantages of Multiphase Operation 6 1.3.1 Introduction of Multiphase Converters 6 1.3.2 The Benefits of Multiphase Operation 7 1.4 Thesis Motivation 10 1.4.1 Benefits of High Switching Frequency 10 1.4.2 Switching Frequency Variation Issues 11 1.4.3 Multiphase Phase-Interleaving Issues 11 1.4.4 Multiphase Current Imbalance Issues 12 1.5 Thesis Outline 13 Chapter 2 Review of Multiphase Buck Converter Phase-Interleaving and Current-Balancing Techniques 15 2.1 Multiphase Phase Interleaving Technique 15 2.1.1 Multiphase Operation with Phase Distributor 16 2.1.2 Multiphase Operation with Phase-Locked Loop 18 2.1.3 Multiphase Operation with Non-linear Control Mechanism 20 2.2 Previous Multiphase Current-Balancing Control Configurations 22 2.2.1 Master-Slave Configuration 22 2.2.2 Democratic Configuration 23 Chapter 3 The Proposed Control Schemes for Multiphase Buck Converter 25 3.1 Simplified Circuit Diagram of Proposed Control Schemes 25 3.2 Proposed Gm-Ramped Phase Interleaving Technique 26 3.2.1 Synthetic Current Ripple Control Architecture 26 3.2.2 Proposed Gm-Ramped Interleaved Method 28 3.3 Proposed Sample and Hold Based Current Sharing Mechanism 31 3.3.1 Sample and Hold (S/H) Based Average Current Sensing 33 3.3.2 On-Chip High Speed Current-balancing Mechanism 35 3.4 Proposed Adaptive-Extended On-Time Control Methodology 37 3.4.1 Analysis of Switching Frequency Variation 37 3.4.2 Conventional Constant On-Time Control 39 3.4.3 Conventional Adaptive On-Time Control 40 3.4.4 Proposed Adaptive-Extended On-Time Control (AETC) 41 3.5 Proposed Auto Phase Shedding / Adding Scheme 44 3.5.1 Introduction of Phase Shedding and Adding Mechanism 45 3.5.2 Transient Detector at Phase Adding Mechanism 47 3.6 Summary 51 Chapter 4 Circuit Implementation 54 4.1 Modulation Ramp Impedance Design 54 4.2 S/H Based Average Current Sensing Circuit Implementation 60 4.2.1 Proposed S/H based current sensing circuit architecture 60 4.2.2 Current sensing two-stage amplifier with RC feedforward 64 4.3 Three Stage High Speed Comparator 67 4.3.1 Wide swing cascade bias circuit 67 4.3.2 Three stage high-speed comparator circuit structure 68 Chapter 5 Simulation and Experimental Results 72 5.1 Chip Fabrication 72 5.1.1 Full Transistor Level Layout and Chip Photo 72 5.1.2 Chip Bonding Diagram 73 5.2 Printed Circuit Board Design Considerations 77 5.3 Measurement Setup 80 5.4 Simulated and Experimental Results 82 Chapter 6 Conclusions and Future Works 91 6.1 Conclusions 91 6.2 Future Works 92 Reference 94 | |
| dc.language.iso | en | |
| dc.subject | 直流轉換器 | zh_TW |
| dc.subject | 相位交錯 | zh_TW |
| dc.subject | 電流平衡 | zh_TW |
| dc.subject | 適應性導通時間(AOT) | zh_TW |
| dc.subject | 相位增減 | zh_TW |
| dc.subject | 電流檢測 | zh_TW |
| dc.subject | 多相操作 | zh_TW |
| dc.subject | phase shedding | en |
| dc.subject | multiphase operation | en |
| dc.subject | phase-interleaving | en |
| dc.subject | current sensing | en |
| dc.subject | current balancing | en |
| dc.subject | adaptive on-time (AOT) | en |
| dc.subject | DC-DC Converter | en |
| dc.title | 具快速響應轉導斜波相位交錯與電流平衡之適應性延伸導通時間控制多相位降壓電源轉換器 | zh_TW |
| dc.title | A Gm-Ramped Interleaving and Current-Balancing Techniques for Adaptive-Extended On-Time Controlled Multiphase Buck Converter Achieving Fast Load | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信樹(Hsin-Shu Chen),陳柏宏(Po-Hung Chen),劉宗德(Tsung-Te Liu) | |
| dc.subject.keyword | 直流轉換器,多相操作,相位交錯,電流檢測,電流平衡,適應性導通時間(AOT),相位增減, | zh_TW |
| dc.subject.keyword | DC-DC Converter,multiphase operation,phase-interleaving,current sensing,current balancing,adaptive on-time (AOT),phase shedding, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU202001933 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202020324300.pdf 未授權公開取用 | 5.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
