請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56156
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭彥甫(Yan-Fu Kuo) | |
dc.contributor.author | Wei-Tung Chen | en |
dc.contributor.author | 陳威同 | zh_TW |
dc.date.accessioned | 2021-06-16T05:17:12Z | - |
dc.date.available | 2014-08-21 | |
dc.date.copyright | 2014-08-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-17 | |
dc.identifier.citation | Andrews, S. B., T. J. Siebenmorgen, and A. Mauromoustakos. 1992. Evaluation of the mcgill 2 rice miller. Cereal Chemistry 69(1):35-43.
Andries, E., and S. Martin. 2013. Sparse methods in spectroscopy: An introduction, overview, and perspective. Applied Spectroscopy 67(6):579-593. Ariana, D., D. E. Guyer, and B. Shrestha. 2006. Integrating multispectral reflectance and fluorescence imaging for defect detection on apples. Computers and Electronics in Agriculture 50(2):148-161. Arlot, S., and A. Celisse. 2010. A survey of cross-validation procedures for model selection. Statistics Surveys 4:40-79. Bhattacharya, D. R., and C. M. Sowbhagya. 1972. A colorimetric bran pigment method for determining the degree of milling rice. . Sci. Food Agriculture 23:161-169. Chang, C.-C., and C.-J. Lin. 2011. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3):1-27. Chen, H., B. P. Marks, and T. J. Siebenmorgen. 1997. Quantifying surface lipid content of milled rice via visible/near-infrared spectroscopy. Cereal Chemistry 74(6):826-831. Cocozza, C., A. Parente, C. Zaccone, C. Mininni, P. Santamaria, and T. Miano. 2011. Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass and Bioenergy 35(2):799-807. Filippi, A. M., R. Archibald, B. L. Bhaduri, and E. A. Bright. 2009. Hyperspectral agricultural mapping using support vector machine-based endmember extraction (SVM-BEE). Optics Express 17(26):23823-23842. Filzmoser, P., M. Gschwandtner, and V. Todorov. 2012. Review of sparse methods in regression and classification with application to chemometrics. Journal of Chemometrics 26(3-4):42-51. Fujita, K., M. Tsuta, M. Kokawa, and J. Sugiyama. 2010. Detection of Deoxynivalenol Using Fluorescence Excitation-Emission Matrix. Food and Bioprocess Technology 3(6):922-927. Hanley, Q. S., P. I. Murray, and T. S. Forde. 2006. Microspectroscopic fluorescence analysis with prism-based imaging spectrometers: Review and current studies. Cytometry Part A 69(8):759-766. Hogan, J. T., and H. J. Deobald. 1961. Note on a method of determining the degree of milling of whole milled rice. Cereal Chemistry 38:291-293. Hsu, C.-W., Chang, Chih-Chung and Lin, Chih-Jen. 2003. A practical guide to support vector classification. National Taiwan University. Kim, M. S., A. M. Lefcourt, and Y. R. Chen. 2004. Multispectral fluorescence imaging techniques for nondestructive food safety inspection. Kokawa, M., J. Sugiyama, M. Tsuta, M. Yoshimura, K. Fujita, M. Shibata, T. Araki, and H. Nabetani. 2013. Development of a Quantitative Visualization Technique for Gluten in Dough Using Fluorescence Fingerprint Imaging. Food and Bioprocess Technology 6(11):3113-3123. Krzanowski, W. J. 1988. Principles of multivariate analysis: A user's perspective. Oxford Statistical Science Series. Oxford University Press Inc. New York, United States. Langsdorf, G., C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. K. Lichtenthaler. 2000. Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation. Photosynthetica 38(4):539-551. Lichtenthaler, H. K., G. Langsdorf, and C. Buschmann. 2012. Multicolor fluorescence images and fluorescence ratio images of green apples at harvest and during storage. Israel Journal of Plant Sciences 60(1-2):97-106. Lichtenthaler, H. K., G. Langsdorf, S. Lenk, and C. Buschmann. 2005. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43(3):355-369. Liu, W., Y. Tao, T. J. Siebenmorgen, and H. Chen. 1998. Digital image analysis method for rapid measurement of rice degree of milling. Cereal Chemistry 75(3):380-385. Lucas, B. D., and T. Kanade. 1981. Iterative image registration technique with an application to stereo vision. Vancouver. Matsler, A. L., and T. J. Siebenmorgen. 2005. Evaluation of operating conditions for surface lipid extraction from rice using a Soxtec system. Cereal Chemistry 82(3):282-286. Matthews, J., and J. J. Spadaro. 1980. Milling degrees of Starbonnet brown assayed. Rice Jorunal 83:12-19. Ogawa, Y., H. Kuensting, H. Nakao, and J. Sugiyama. 2002. Three-dimensional lipid distribution of a brown rice kernel. Journal of Food Science 67(7):2596-2599. Otsu, N. 1979. A threshold selection method from gray-level histograms. Systems, Man and Cybernetics, IEEE Transactions on 9(1):62-66. Pajares, G., and J. M. de la Cruz. 2004. A wavelet-based image fusion tutorial. Pattern Recognition 37(9):1855-1872. Pan, Z., K. S. P. Amaratunga, and J. F. Thompson. 2007. Relationship between rice sample milling conditions and milling quality. Transactions of the ASABE 50(4):1307-1313. Peng, X., Z. Yang, J. Wang, J. Fan, Y. He, F. Song, B. Wang, S. Sun, J. Qu, J. Qi, and M. Yan. 2011. Fluorescence ratiometry and fluorescence lifetime imaging: Using a single molecular sensor for dual mode imaging of cellular viscosity. Journal of the American Chemical Society 133(17):6626-6635. Qiao, Z., L. Zhou, and J. Z. Huang. 2009. Sparse linear discriminant analysis with applications to high dimensional low sample size data. IAENG International Journal of Applied Mathematics 39(1). Rother, C., V. Kolmogorov, and A. Blake. 2004. 'GrabCut' - Interactive foreground extraction using iterated graph cuts. Acm Transactions on Graphics 23(3):309-314. Saadi, A., I. Lempereur, S. Sharonov, J. C. Autran, and M. Manfait. 1998. Spatial distribution of phenolic materials in durum wheat grain as probed by confocal fluorescence spectral imaging. Journal of Cereal Science 28(2):107-114. Saunders, C., M. O. Stitson, and J. Weston. 1998. Support vector machine reference manual. Seber, G. A. F. 2004. Multivariate Observations. Wiley series in probability and statistics. New York : Wiley. Siebenmorgen, T. J., and H. Sun. 1994. Relationship between milled rice surface fat concentration and degree of milling as measured with a commercial milling meter. Cereal Chemistry 71:327-329. Sun, D. 2008. Computer Vision Technology for Food Quality Evaluation. Academic Press. Tang, J. L., D. J. He, X. Jing, and D. Feng. 2011. Maize seedling/weed multiclass detection in visible/near infrared image based on SVM. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves 30(2):97-103. USDA. 1982. Rice inspection handbook. U.S. Department of Agriculture, Federal Grain Inspection Service. USDA. 1997. Inspection handbook for the sampling, inspection, grading, and certification of rice. U.S. Department of Agriculture, Federal Grain Inspection Service. Wood, D. F., T. J. Siebenmorgen, T. G. Williams, W. J. Orts, and G. M. Glenn. 2012. Use of microscopy to assess bran removal patterns in milled rice. Journal of Agricultural and Food Chemistry 60(28):6960-6965. Yadav, B. K., and V. K. Jindal. 2001. Monitoring milling quality of rice by image analysis. Computers and Electronics in Agriculture 33(1):19-33. Yang, J., D. Chu, L. Zhang, Y. Xu, and J. Yang. 2013. Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Transactions on Neural Networks and Learning Systems 24(7):1023-1035. Zeng, H., A. Weiss, R. Cline, and C. E. MacAulay. 1998. Real-time endoscopic fluorescence imaging for early cancer detection in the gastrointestinal tract. Bioimaging 6(4):151-165. Zweig, M. H., and G. Campbell. 1993. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry 39(4):561-577. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56156 | - |
dc.description.abstract | 稻米通常需經過精米加工程序,並且除去外層之稻殼以及米糠後才進行販售。加工之後,稻米表面之米糠殘留程度會影響稻米的品質與口感。而米糠層的主要組成成份為酯值。本研究以高光譜影像與螢光影像兩種非破壞性檢測模式檢測稻米表面之米糠殘留程度及其分佈。高光譜影像與螢光影像皆為具備空間資訊與光譜資訊之感測技術,常用於待測物上之特定化學成分定量檢測。在高光譜影像實驗中,稻米樣本經過精米以後,使用高光譜影像系統拍照,隨後將同一個稻米樣本進行染色、光學顯微鏡拍照、影像處理程序,以確知其表面實際之糠層分佈。接著使用高光譜影像作為機器學習分類器之輸入資料,建立出一個預測模型;在螢光影像實驗中,螢光指紋實驗分析結果決定了在螢光影像實驗中,所要採用的激發端與發射端之波段組合。稻米樣本使用螢光影像系統拍照,隨後進行與高光譜實驗中一樣的步驟,包含進行染色與建立機器學習之模型;最後,機器學習模型所預測之稻米表面糠層分佈將與染色法的結果進行比較。結果顯示,運用高光譜影像以及螢光光譜影像可以合理的預測出稻米上的糠層分佈。 | zh_TW |
dc.description.abstract | Rice is typically consumed after milling, a process of removing the husk and bran layers on rice surface. The degree of bran residue remaining on rice surface after milling directly affects the rice quality. And the bran layer of rice mainly composed of lipids. This work proposed to nondestructively detect bran residue on single rice grain using hyperspectral imaging (HSI) and fluorescence imaging (FRI). HSI and FRI are sensing techniques that combines both spatial and spectral information and may be used for chemical compound identification and quantification. In the HSI experiment, rice samples were milled and scanned using an HSI system. Afterward, the rice samples were dyed to enable the residual bran to be identified using optical microscopy and image processing algorithms. Classifiers were then developed to predict the rice bran residue by using the HSI measurements as inputs. In the FRI experiment, appropriate combinations of fluorescence excitation and emission wavelengths were identified. Fluorescence images of rice samples at these excitation and emission wavelength combinations were then acquired and were used as the inputs to the machine learning classifier. After that, the same staining procedure and model development performed in the HSI work were applied. Bran image were predicted by using the fluorescence images. The predicted images were compared with the micrograph images for classifier performance evaluation. The proposed HSI and FRI approaches could reasonably estimate the residual bran distribution on milled rice surface. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:17:12Z (GMT). No. of bitstreams: 1 ntu-103-R01631001-1.pdf: 1568840 bytes, checksum: 2744671a4fbbb11cea8455e3cd7c4d65 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
ACKNOWLEDGEMENTS i 摘要 ii ABSTRACT iii TABLE OF CONTENTS v LIST OF TABLES viii LIST OF FIGURES ix CHAPTER 1. INTRODUCTION 10 1.1 General Background Information 10 1.2 Objectives 10 1.3 Organization 11 CHAPTER 2. LITERATURE REVIEW 12 2.1 Chemical Method to Determine the Rice Surface Lipid Content 12 2.2 Nondestructively Method to Determine the Rice Surface Lipid Content 12 2.3 Hyperspectral Imaging System 13 2.4 Excitation-Emission Matrix Fluorescence Imaging 14 CHAPTER 3. OBSERVATION AND MEASUREMENT OF RESIDUAL BRAN ON MILLED RICE USING HYPERSPECTRAL IMAGING 15 3.1 Material and Methods 15 3.1.1 Grain Sample Preparation 15 3.1.2 Hyperspectral Images Acquisition 16 3.1.3 Micrograph Image Acquisition and Bran Pixel Identification 17 3.1.4 Image Registration 19 3.1.5 Principal Component Analysis of Spectral Data 20 3.1.6 Pixel Classifier Development 21 3.2 Experiment 22 3.2.1 Hyperspectral Images of Rice 22 3.2.2 Bran Images and Image Registration 23 3.2.3 Characteristics of the Bran and Endosperm Pixel Spectrum 24 3.2.4 Pixel Classifier Development 26 3.2.5 Prediction of Rice Surface Lipid Content 28 3.3 Concluding Remarks 30 CHAPTER 4. DETECTING BRAN RESIDUE DISTRIBUTION ON RICE SURFACE USING FLUORESCENCE IMAGING 32 4.1 Material and Methods 32 4.1.1 Rice Sample Preparation 32 4.1.2 Fluorescence Acquisition on Powdered Samples 33 4.1.3 Feature Selection of Excitation and Emission Wavelengths 34 4.1.4 Excitation and Emission Matrix Fluorescence Image Acquisition 34 4.1.5 Pixel Classifier Development 35 4.2 Experiment 36 4.2.1 Excitation and Emission Matrix of Powdered Samples 36 4.2.2 Feature Wavelength Selection 37 4.2.3 Fluorescence Image Acquisition and Image Registration 38 4.2.4 Pixel Classifier Development 40 4.2.5 Prediction of Rice Bran Residue 40 4.3 Concluding Remarks 42 CHAPTER 5. DISCUSSION AND CONCLUSION 43 REFERENCES 44 | |
dc.language.iso | zh-TW | |
dc.title | 利用高光譜影像與螢光影像偵測稻米表面酯質殘留 | zh_TW |
dc.title | Observation and Measurement of Residual Bran on Milled Rice Surface Using Hyperspectral Imaging and Fluorescence Imaging | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賴喜美,李允中 | |
dc.subject.keyword | 稻米表面酯值殘留,高光譜影像,螢光影像,影像處理,支持向量機, | zh_TW |
dc.subject.keyword | surface lipid content,hyperspectral imaging,fluorescence imaging,image processing,support vector machine, | en |
dc.relation.page | 50 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。