請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56137完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙福杉 | |
| dc.contributor.author | Chien-Ya Hung | en |
| dc.contributor.author | 洪千雅 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:16:36Z | - |
| dc.date.available | 2024-09-01 | |
| dc.date.copyright | 2014-09-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | Aberg, P., Nicander, I., Hansson, J., Geladi, P., Holmgren, U., & Ollmar, S. (2004). Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Transactions on Biomedical Engineering, 51(12), 2097-2102.
Aberg, P., Nicander, I., Holmgren, U., Geladi, P., & Ollmar, S. (2003). Assessment of skin lesions and skin cancer using simple electrical impedance indices. Skin Research and Technology, 9(3), 257-261. Ali, A. M., Dawood, M. S., Taher, M. K., & Zghair, F. A. (2012). Preliminary study for non - invasive optical detection of squamous and basal cell carcinomas. BioMedical Engineering OnLine, 11(1), 88. Androphy, E. J., & Kirnbauer, R. (2012). Human papilloma virus infections. In Goldsmith, L., Katz, S., Gilchrest, B., Paller, A., Leffell, D., & Wolff, K. (Eds.), Fitzpatrick's Dermatology in General Medicine (8th ed.), 2421-2433: McGraw-Hill Professional. Baxter, M., & Mann, P. R. (1969). Electron microscopic studies of the invasion of human hair in vitro by three keratinophilic fungi. Medical Mycology, 7(1), 33-37. Beetner, D. G., Kapoor, S., Manjunath, S., Zhou, X., & Stoecker, W. V. (2003). Differentiation among basal cell carcinoma, benign lesions, and normal skin using electric impedance. IEEE Transactions on Biomedical Engineering, 50(8), 1020-1025. Bengtsson, M., Nilsson, G., & Lofstrom, J. (1983). The effect of spinal analgesia on skin blood flow, evaluated by laser Doppler flowmetry. Acta Anaesthesiologica Scandinavica, 27(3), 206-210. Birgersson, U., Birgersson, E., Aberg, P., Nicander, I., & Ollmar, S. (2011). Non-invasive bioimpedance of intact skin: mathematical modeling and experiments. Physiological Measurement, 32(1), 1-18. Cheney, M., Isaacson, D., & Newell, J. C. (1999). Electrical impedance tomography. SIAM review, 41(1), 85-101. Cua, A. B., Wilhelm, K. P., & Maibach, H. (1990). Frictional properties of human skin: relation to age, sex and anatomical region, stratum corneum hydration and transepidermal water loss. British Journal of Dermatology, 123(4), 473-479. Curdy, C., Naik, A., Kalia, Y. N., Alberti, I., & Guy, R. H. (2004). Non-invasive assessment of the effect of formulation excipients on stratum corneum barrier function in vivo. International Journal of Pharmaceutics, 271(1-2), 251-256. DeLauro, T. M., & DeLauro, N. M. (2012). Corns and calluses. In Goldsmith, L., Katz, S., Gilchrest, B., Paller, A., Leffell, D., & Wolff, K. (Eds.), Fitzpatrick's Dermatology in General Medicine (8th ed.), 1111-1114: McGraw-Hill Professional. Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two-photon laser scanning fluorescence microscopy. Science, 248(4951), 73-76. Derler, S., Gerhardt, L.-C., Lenz, A., Bertaux, E., & Hadad, M. (2009). Friction of human skin against smooth and rough glass as a function of the contact pressure. Tribology International, 42(11), 1565-1574. Diaspro, A. (2002). Confocal and two-photon microscopy: foundations, applications, and advances (Vol. 1): Wiley-Liss, New York. Dua, R., Beetner, D. G., Stoecker, W. V., & Wunsch, D. C. (2004). Detection of basal cell carcinoma using electrical impedance and neural networks. IEEE Transactions on Biomedical Engineering, 51(1), 66-71 Egawa, M., Ozaki, Y., & Takahashi, M. (2006). In vivo measurement of water content of the fingernail and its seasonal change. Skin Research and Technology, 12(2), 126-132. Egger, M. D., & Petran, M. (1967). New reflected-light microscope for viewing unstained brain and ganglion cells. Science, 157(3786), 305-307. Emtestam, L., Nicander, I., Stenstrom, M., & Ollmar, S. (1998). Electrical impedance of nodular basal cell carcinoma: a pilot study. Dermatology, 197(4), 313-316. English, M. P. (1963). The saprophytic growth of keratinophilic fungi on keratin. Medical Mycology, 2(3), 115-130. English, M. P. (1968). The developmental morphology of the perforating organs and eroding mycelium of dermatophytes. Medical Mycology, 6(3), 218-227. Faes, T. J., van der Meij, H. A., de Munck, J. C., & Heethaar, R. M. (1999). The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiological Measurement, 20(4), R1-10. Fluhr, J. W., Elsner, P., Berardesca, E., & Maibach, H. I. (2013). Bioengineering of the skin: Water and the stratum corneum (2nd ed.): CRC Press. Franken, P., Hill, A., Peters, C., & Weinreich, G. (1961). Generation of optical harmonics. Physical Review Letters, 7(4), 118-119. Goppert‐Mayer, M. (1931). Uber elementarakte mit zwei quantensprungen. Annalen der Physik, 401(3), 273-294. Gannaway, J., & Sheppard, C. (1978). Second-harmonic imaging in the scanning optical microscope. Optical and Quantum Electronics, 10(5), 435-439. Garlick, J. (2007). Engineering skin to study human disease – Tissue models for cancer biology and wound repair. In Lee, K. & Kaplan, D. (Eds.), Tissue Engineering II (Vol. 103): Springer Berlin Heidelberg. Geselowitz, D. B. (1971). An application of electrocardiographic lead theory to impedance plethysmography. Biomedical Engineering, IEEE Transactions on(1), 38-41. Gest, H., & Gest. (2004). The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society. Notes and Records of the Royal Society, 58(2), 187-201. Gilad, O., & Holder, D. S. (2009). Impedance changes recorded with scalp electrodes during visual evoked responses: implications for electrical impedance tomography of fast neural activity. Neuroimage, 47(2), 514-522. Glickman, Y. A., Filo, O., David, M., Yayon, A., Topaz, M., Zamir, B., . . . Kenan, G. (2003). Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Research and Technology, 9(3), 262-268. Goldsmith, L., Katz, S., Gilchrest, B., Paller, A., Leffell, D., & Wolff, K. (2012). Fitzpatricks dermatology in general medicine (8th ed.): McGraw-Hill Professional. Grimnes, S. (1983). Skin impedance and electro-osmosis in the human epidermis. Medical & Biological Engineering & Computing, 21(6), 739-749. Gupta, D., Lammersfeld, C. A., Burrows, J. L., Dahlk, S. L., Vashi, P. G., Grutsch, J. F., . . . Lis, C. G. (2004). Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. The American Journal of Clinical Nutrition, 80(6), 1634-1638. Gutierrez, M., Wortsman, X., Filippucci, E., De Angelis, R., Filosa, G., & Grassi, W. (2009). High-Frequency Sonography in the Evaluation of Psoriasis Nail and Skin Involvement. Journal of ultrasound in medicine, 28(11), 1569-1574. Halekoh, U., Hojsgaard, S., & Yan, J. (2006). The R package geepack for generalized estimating equations. Journal of Statistical Software, 15(2), 1-11. Hongcharu, W., Dwyer, P., Gonzalez, S., & Anderson, R. R. (2000). Confirmation of onychomycosis by in vivo confocal microscopy. Journal of the American Academy of Dermatology, 42(2), 214-216. Hui, D., Xue-cheng, S., & Ai-e, X. (2013). Evaluation of reflectance confocal microscopy in dermatophytosis. Mycoses, 56(2), 130-133. Humbert, P., Sainthillier, J. M., Mac‐Mary, S., Petitjean, A., Creidi, P., & Aubin, F. (2005). Capillaroscopy and videocapillaroscopy assessment of skin microcirculation: dermatologic and cosmetic approaches. Journal of cosmetic dermatology, 4(3), 153-162. Hung, C., Sun, P., Chiang, S, & Jaw, F. (2014). In vitro differential diagnosis of clavus and verruca by a predictive model generated from electrical impedance. PLoS ONE, 9(4), e93647. Hutton, R. D., Kerbs, S., & Yee, K. (1978). Scanning electron microscopy of experimental Trichophyton mentagrophytes infections in guinea pig skin. Infection and Immunity, 21(1), 247-253. Johnsen, G. K., Martinsen, O. G., & Grimnes, S. (2009). Estimation of in vivo water content of the stratum corneum from electrical measurements. The Open Biomedical Engineering Journal, 3, 8-12. Kaiser, W., & Garrett, C. (1961). Two-photon excitation in CaF2: Eu2+. Physical Review Letters, 7(6), 229. Kanbe, T., & Tanaka, K. (1982). Ultrastructure of the invasion of human hair in vitro by the keratinophilic fungus Microsporum gypseum. Infection and Immunity, 38(2), 706-715. Kuzmina, N., Talme, T., Lapins, J., & Emtestam, L. (2005). Non-invasive preoperative assessment of basal cell carcinoma of nodular and superficial types. Skin Research and Technology, 11(3), 196-200. Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Manuel Gomez, J., . . . Pichard, C. (2004). Bioelectrical impedance analysis—part II: utilization in clinical practice. Clinical Nutrition, 23(6), 1430-1453. Liansheng, Z., Xin, J., Cheng, Q., Zhiping, W., & Yanqun, L. (2013). Diagnostic applicability of confocal laser scanning microscopy in tinea corporis. International Journal of Dermatology, 52(10), 1281-1282. Lichtman, J. W., & Conchello, J.-A. (2005). Fluorescence microscopy. Nature methods, 2(12), 910-919. Lin, S., Jee, S., & Dong, C. (2007). Multiphoton microscopy: a new paradigm in dermatological imaging. European Journal of Dermatology, 17(5), 361-366. Lindholm-Sethson, B., Han, S., Ollmar, S., Nicander, I., Jonsson, G., Lithner, F., . . . Geladi, P. (1998). Multivariate analysis of skin impedance data in long-term type 1 diabetic patients. Chemometrics and Intelligent Laboratory Systems, 44(1–2), 381-394. Markus, R., Huzaira, M., Anderson, R. R., & Gonzalez, S. (2001). A better potassium hydroxide preparation: In vivo diagnosis of tinea with confocal microscopy. Archives of Dermatology, 137(8), 1076-1078. Martinsen, O. G., & Grimnes, S. (2001). Facts and myths about electrical measurement of stratum corneum hydration state. Dermatology, 202(2), 87-89. doi: 51604 Martinsen, O. G., & Grimnes, S. (2011). Bioimpedance and bioelectricity basics: Academic press. Martinsen, O. G., Grimnes, S., & Nilsen, S. H. (2008). Water sorption and electrical properties of a human nail. Skin Research and Technology, 14(2), 142-146. Martinsen, O. G., Grimnes, S., & Sveen, O. (1997). Dielectric properties of some keratinised tissues. Part 1: Stratum corneum and nail in situ. Medical & Biological Engineering & Computing, 35(3), 172-176. McKee, A. D. V. P. H. (2002). Atlas of clinical dermatology: Edinburgh : Churchill Livingstone. Miklavčič, D., Pavšelj, N., & Hart, F. X. (2006). Electric properties of tissues Wiley Encyclopedia of Biomedical Engineerin, 1-12. New Jersey: John Wiley & Sons, Inc. Mize, M. M., Aguirre Vila-Coro, A., & Prager, T. C. (1989). The relationship between postnatal skin maturation and electrical skin impedance. Archives of Dermatology, 125(5), 647-650. Murphy, D. B., & Davidson, M. W. (2012). Fundamentals of light microscopy and electronic imaging: John Wiley & Sons. Nicander, I., Norlen, L., Brockstedt, U., Rozell, B. L., Forslind, B., & Ollmar, S. (1998). Electrical impedance and other physical parameters as related to lipid content of human stratum corneum. Skin Research and Technology, 4(4), 213-221. Nicander, I., Nyren, M., Emtestam, L., & Ollmar, S. (1997). Baseline electrical impedance measurements at various skin sites – related to age and sex. Skin Research and Technology, 3(4), 252-258. Nicander, I., Ollmar, S., Eek, A., Lundh Rozell, B., & Emtestam, L. (1996). Correlation of impedance response patterns to histological findings in irritant skin reactions induced by various surfactants. British Journal of Dermatology, 134(2), 221-228. Nyren, M., Kuzmina, N., & Emtestam, L. (2003). Electrical impedance as a potential tool to distinguish between allergic and irritant contact dermatitis. Journal of the American Academy of Dermatology, 48(3), 394-400. Ollmar, S., Nyren, M., Nicander, I., & Emtestam, L. (1994). Electrical impedance compared with other non-invasive bioengineering techniques and visual scoring for detection of irritation in human skin. British Journal of Dermatology, 130(1), 29-36. Onumah, N., & Scher, R. K. (2010). Nail surgery. eMedicine. Retrieved March. Ott, M., Fischer, H., Polat, H., Helm, E. B., Frenz, M., Caspary, W. F., & Lembcke, B. (1995). Bioelectrical impedance analysis as a predictor of survival in patients with human immunodeficiency virus infection. Journal of Acquired Immune Deficiency Syndromes & Human Retrovirology, 9(1), 20-25. Patel, V., & Head, M. (1969). Some observations on skin friction and velocity profiles in fully developed pipe and channel flows. Journal of Fluid Mechanics, 38(01), 181-201. Pharaon, M., Gari-Toussaint, M., Khemis, A., Zorzi, K., Petit, L., Martel, P., . . . Bahadoran, P. (2014). Diagnosis and treatment monitoring of toenail onychomycosis by reflectance confocal microscopy: Prospective cohort study in 58 patients. Journal of the American Academy of Dermatology. Prentice, R. L., & Zhao, L. P. (1991). Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics, 825-839. Rafferty, T. D., Marrero, O., Nardi, D., Schachter, E. N., Mentelos, R., & Ngeow, Y. F. (1982). Transcutaneous PO2 as a trend indicator of arterial PO2 in normal anesthetized adults. Anesthesia & Analgesia, 61(3), 252-255. Reihsner, R., Balogh, B., & Menzel, E. (1995). Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration. Medical Engineering & Physics, 17(4), 304-313. Rothmund, G., Sattler, E., Kaestle, R., Fischer, C., Haas, C., Starz, H., & Welzel, J. (2013). Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis–comparison of six diagnostic methods. Mycoses, 56(1), 47-55. Rothmund, G., Sattler, E. C., Kaestle, R., Fischer, C., Haas, C. J., Starz, H., & Welzel, J. (2013). Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis - comparison of six diagnostic methods. Mycoses, 56(1), 47-55. Scher, R. K., & Daniel, C. R. (1997). Nails: therapy, diagnosis, surgery (2nd ed.). Philadelphia: W.B. Saunders. Soeller, C., & Cannell, M. (1999). Two-photon microscopy: imaging in scattering samples and three-dimensionally resolved flash photolysis. Microscopy research and technique, 47(3), 182-195. Stern, D. K., Diamantis, S., Smith, E., Wei, H., Gordon, M., Muigai, W., . . . Spuls, P. (2007). Water content and other aspects of brittle versus normal fingernails. Journal of the American Academy of Dermatology, 57(1), 31-36. Team, R. D. C. (2010). Team RDC: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Tosti, A., & Piraccini, B. M. (2000). Biology of nails and nail disorders. British Journal of Dermatology, 142(89). Turan, E., Erdemir, A. T., Gurel, M. S., & Yurt, N. (2013). A new diagnostic technique for tinea incognito: In vivo reflectance confocal microscopy. Report of five cases. Skin Research and Technology, 19(1), e103-e107. Wessel, S., Gniadecka, M., Jemec, G. B., & Wulf, H. C. (1999). Hydration of human nails investigated by NIR-FT-Raman spectroscopy. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1433(1), 210-216. Wirth, R., Volkert, D., Rosler, A., Sieber, C. C., & Bauer, J. M. (2010). Bioelectric impedance phase angle is associated with hospital mortality of geriatric patients. Arch Gerontol Geriatr, 51(3), 290-294. Yamamoto, T., & Yamamoto, Y. (1976). Electrical properties of the epidermal stratum corneum. Medical & Biological Engineering, 14(2), 151-158. Yan, J., & Fine, J. (2004). Estimating equations for association structures. Statistics in Medicine, 23(6), 859-874. Yee, T. W., & Wild, C. (1996). Vector generalized additive models. Journal of the Royal Statistical Society. Series B (Methodological), 481-493. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56137 | - |
| dc.description.abstract | Skin diseases are diverse, and it is important to make diagnoses early. The methods include physical examinations and histopathology of skin tissue. Physical examinations are based on physical signs and appearances of skin lesions; skin biopsy provides tissue-level characters and has become the standard. However, it is an invasive procedure. Based on the clinical requirements, we provide two alternative methods as screening tools for the infectious diseases.
The first part of the dissertation is electrical impedance in dermatology. Similar clinical appearances prevent accurate diagnosis of two common skin diseases, clavus and verruca. In this study, electrical impedance was employed as a novel tool to generate a predictive model for estimating the probability of being verruca. A total of 57 samples, comprised of 29 clavus and 28 varruca lesions, were used. To obtain impedance variables, an LCR-meter system was applied to measure capacitance (C), resistance (Re), impedance (Z) and phase angle (θ). The thickness (d) of the lesions was an additional variable. These variables of clavus and verruca were then compared by fitting the univariate logistic regression models with the generalized estimating equations (GEE) method. In model generation, log ZSD and θSD were formulated as predictors by fitting multiple logistic regression models with the same GEE method. Moreover, the model is validated by the good-of fit (GOF) assessments and the generalized additive models (GAM). The result suggests that the generated model could provide a rapid, relatively low-cost, safe and non-invasive screening tool in clinic use. After that, we designed a portable and low-cost impedance measurement device that can be applied on human nails which have very high impedance in nature. The circuit is designed based on the voltage divider theory. A sine wave with amplitude of 1V and frequency ranging from 500 to 7k Hz was used for excitation. By using an AD converter card installed in a laptop computer, the results can be analyzed quantitatively. For portability considerations, the bias current of our circuit is less than 1mA, so it is suitable for battery power. By changing the compatible resistance to match different range of impedance value, the designed circuit has more versatility on measuring impedance of samples. The results show that our circuit has more capability to measure the impedance of nails than an LCR-meter. The second part concerns the imaging study of skin fungal infection with laser-scanning microscopy. Fungal hyphae or spores can be observed in the skin when it becomes infected by fungi. Traditional transmission microscope can only provide the 2-D image of the specimen, which makes the appreciation of spatial arrangement of fungal elements difficult. Furthermore, in most circumstances, keratinolytic agents should be used on the specimen to make the examination of fungi easier. However, this specimen treatment makes the observation of the natural conformation of fungi in human tissue impossible. We used a confocal-and-multiphoton microscopy to check the specimen of tinea capitis, tinea corposis and onychomycosis, and constructed the fungal stereo images. We found that laser-scanning microscopy is an ideal tool in constructing the real fungal invasive pattern in human tissue. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:16:36Z (GMT). No. of bitstreams: 1 ntu-103-D92548019-1.pdf: 8692365 bytes, checksum: 13ef1182686923d77f3b18613aa83388 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents………………………………………………………… 1
Figure Contents 5 Table Contents 7 Chapter 1. Introduction 8 1.1. Background 8 1.1.1. Introduction of Dermatology 8 1.1.2. Engineering Techniques in Dermatologic Diagnosis 9 1.2. Motivation and Purposes 10 1.3. Outline 10 Chapter 2. Electrical Impedance in Dermatology 12 2.1. In Vitro Differential Diagnosis of Clavus and Verruca by a Predictive Model Generated from Electrical Impedance 12 2.1.1. Introduction 12 2.1.1.1. Clavus and Verruca 12 2.1.1.2. Electrical Impedance 14 2.1.1.3. Purposes 15 2.1.2. Materials and Methods 17 2.1.2.1. Sample Collection 17 2.1.2.2. Impedance Measurement 17 2.1.2.3. Statistics Analysis 18 2.1.3. Results 20 2.1.3.1. Frequency Selection 20 2.1.3.2. Impedance Data 22 2.1.3.3. Final Model Selection 26 2.1.3.4. Goodness of Fit (GOF) 33 2.1.4. Discussion 35 2.1.5. Conclusions 37 2.2. Portable Electrical Impedance Measurement Circuit- Application on Human Nails 39 2.2.1. Introduction 39 2.2.1.1. Nails 39 2.2.1.2. Motivation and Purposes 41 2.2.2. Materials and Methods 41 2.2.2.1. Circuit Design 41 2.2.2.2. In Vitro Experiment 43 2.2.3. Results 44 2.2.3.1. Device Calibration 44 2.2.3.2. Preliminary Results 46 2.2.4. Discussion 47 2.2.5. Conclusions 47 Chapter 3. Laser-scanning Microscopy in Dermatology- Reconstruction of Fungal Invasion Pattern in Human Skin Tissue with Confocal and Multiphoton Microscopy Image Processing 48 3.1. Introduction 48 3.1.1. Skin Fungal Infections 48 3.1.2. Etiology and Diagnosis of Selected Skin Fungal Diseases 50 3.1.2.1. Tinea Capitis 50 3.1.2.2. Onychomycosis 51 3.1.2.3. Tinea Corporis 52 3.1.2.4. Tinea Versicolor 52 3.1.3. Laser-scanning Microscopy (LSM) 53 3.1.3.1. Optical Microscopy 53 3.1.3.2. Confocal Microscopy 54 3.1.3.3. Multiphoton Microscopy 56 3.1.3.4. Fluorescence 60 3.1.4. The Application of Microscopy in the Study of Skin Fungal Infections 61 3.1.4.1. The Studies on Morphology and Invasive Patterns of Fungi in Human Tissue 61 3.1.4.2. The Application of Confocal and Multiphoton Microscopes in the Diagnosis of Skin Fungal Infections 62 3.1.5. Motivation and Purposes 63 3.2. Materials and Methods 65 3.2.1. Specimen Preparation 65 3.2.1.1. Specimen Collection 65 3.2.1.2. Pathogens Identification 65 3.2.1.3. Specimen Preparation and Staining for the Laser-scanning Microscope 65 3.2.1.4. Equipments 66 3.2.1.5. Software 66 3.3. Results 67 3.3.1. Tinea Capitis 67 3.3.2. Onychomycosis 72 3.3.3. Tinea Corporis 75 3.3.4. Tinea Versicolor 77 3.4. Discussion 79 Chapter 4. Conclusions and Future Works 81 4.1. Electrical Impedance in Dermatology 81 4.2. Laser-scanning Microscopy in Dermatology 81 References 83 List of Abbreviations 92 | |
| dc.language.iso | en | |
| dc.subject | 雷射掃描顯微術 | zh_TW |
| dc.subject | 電阻抗 | zh_TW |
| dc.subject | 真菌感染 | zh_TW |
| dc.subject | laser-scanning microscopy | en |
| dc.subject | nail | en |
| dc.subject | fungus infection | en |
| dc.subject | impedance | en |
| dc.title | 電阻抗和雷射掃描顯微術在皮膚科之應用 | zh_TW |
| dc.title | Electrical Impedance and Laser-scanning Microscopy in Dermatology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃基礎,鄭國順,謝瑞香,王銘燦 | |
| dc.subject.keyword | 電阻抗,真菌感染,雷射掃描顯微術, | zh_TW |
| dc.subject.keyword | impedance,nail,fungus infection,laser-scanning microscopy, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 8.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
