Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56124
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-John Chang)
dc.contributor.authorJun-Lin Huangen
dc.contributor.author黃俊霖zh_TW
dc.date.accessioned2021-06-16T05:16:11Z-
dc.date.available2017-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation1. Almasri M.N., Kaluarachchi J.J., 2005, “Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data”, Environmental Modelleing and Software, 20 (7): 851–871.
2. Antar M.A., Elassiouti I., Allam M.N., 2006, “Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study”, Hydrological Processes, 20(5): 1201–1216.
3. Chang F.J. and Chen Y.C., 2001, “A counterpropagation fuzzy-neural network modeling approach to real-time streamflow prediction”, Journal of Hydrology, 245(1-4): 153-164.
4. Chang F.J., Chang L.C., Kao H.S. and Wu G.R., 2010, “Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network”, Journal of Hydrology, 384(1-2): 118-129.
5. Chang F.J., Chang L.C., Wang Y.S., 2007, “Enforced self-organizing map neural networks for river flood forecasting”, Hydrological Processes, 21(6): 741–749.
6. Chang F.J., Hwang Y.Y., 1999, “A Self-organization algorithm for real-time flood forecast”, Hydrological Processes, 13(2): 123-138.
7. Chang, F. J., Lin, C.H., Chang, K.C., Kao, Y.H., Chang, L.C., 2014, “Investigating the interactive mechanisms between surface water and groundwater over the Jhuoshuei River Basin in Central Taiwan”, Paddy and Water Environment, 12(3): 365-377.
8. Chang L.C., Chang F.J., Tsai Y.H., 2005, “The Fuzzy Exemplar-Based Inference System for Flood Forecasting”, Water Resources Research, 41(2): 1-12.
9. Chaves P., Toshiharu K., 2007, “Conceptual fuzzy neural network model for water quality simulation”, Hydrological Processes, 21(5): 634–646.
10. Dahiya S., Singh B., Gaur S., Garg V.K. , Kushwaha H.S., 2007, “Analysis of groundwater quality using fuzzy synthetic evaluation”, Journal of Hazardous Materials, 147(3): 938–946.
11. Daliakopoulos I.N., Coulibalya P., Tsanis I.K., 2005, “Groundwater level forecasting using artificial neural networks”, Journal of Hydrology, 309(1-4): 229-240.
12. Daliakopoulos I.N., Coulibalya P., Tsanis I.K., 2005, “Groundwater level forecasting using artificial neural networks”, Journal of Hydrology, 309(1-4): 229-240.
13. Delin G.N., Healy R.W., Lorenz D.L., Nimmo J.R., 2007, “Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA”, Journal of Hydrology, 334(1-2): 231– 249.
14. Gurwin J., Lubczynski M., 2005, “Modeling of complex multi-aquifer systems for groundwater resources evaluation—Swidnica study case (Poland)”, Hydrogeology Journal, 13(4):627-639.
15. Halford K.J., Mayer G.C., 2000, “Problems Associated with Estimating Ground Water Discharge and Recharge from Stream-Discharge Records”, No.3-GROUND WATER, 38(3): 331-342.
16. Hasebe M., Nagayama Y., 2002, “Reservoir operation using the neural network and fuzzy systems for dam control and operation support”, Advances in Engineering Software, 33(5): 245-260.
17. Huang W.C., Hsieh C.L., 2010, “Real‐time reservoir flood operation during typhoon attacks”, Water Resources Research, 46(7), doi:10.1029/2009WR008422.
18. Hydrogeological record series, 2009, ‘Groundwater recharge from the Gascoyne River’, Western Australia, Government of Western Australia Department of Water.
19. Jacob C.E., 1940, “The flow of water in an elastic artesian aquifer”, Eos Transactions American Geophysical Union, 21(2): 574-586.
20. Jang J.S.R., 1993, “ANFIS - adaptive-network-based fuzzy inference system”, IEEE Transactions on Systems Man and Cybernetics, 23(3): 665-685.
21. Kalbus E., Reinstorf F., Schirmer M., 2006, “Measuring methods for groundwater – surface water interactions: a review”, Hydrology and Earth System Sciences, 10(6): 873-887.
22. Karaboga D., Aytekin B., Tefaruk H., 2004, “Fuzzy Logic Based Operation of Spillway Gates of Reservoirs during Floods”, Journal of Hydrologic Engineering, 9(6): 544-549.
23. Končar N., 1997, “Optimisation methodologies for direct inverse neurocontrol, PhD thesis, Department of computing, Imperial College of Science, Technology and Medicine, University of London.
24. Krause S., Bronstert A., 2007, “The impact of groundwater–surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany”, Hydrological Processes, 21(2): 169-184.
25. Krause S., Bronstert A., Zehe E., 2007, “Groundwater–surface water interactions in a North German lowland floodplain – Implications for the river discharge dynamics and riparian water balance”, Journal of Hydrology, 347(3-4): 404-417.
26. Liu Y. and Sheng Z., 2011, “Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande”, Journal of Hydrology, 409(3-4): 710-723.
27. Maidment D.R., 1993, ‘Handbook of hydrology’, McGraw-Hill, New York .
28. Matsumoto N., 1992. Regression analysis for anomalous changes of ground water level due to earthquakes. Geophysical Research Letters, 19(12), 1193-1196.
29. Nayak, 2006, “Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach”, Water Resources Management, 20(1): 77–90.
30. Nourani V., Ejlali R.G., Alami M.T., 2011, “Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study”, Environmental Engineering Science, 28 (3), 217–228.
31. Nourani V., Mogaddam A.A., Nadiri A.O., 2008, “An ANN-based model for spatiotemporal groundwater level forecasting”, Hydrologcal Processes, 22(26): 5054–5066.
32. Nourani, V., & Sayyah Fard, M. 2012. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Advances in Engineering Software, 47(1), 127-146.
33. Osman Y.Z., Bruen M.P., 2002, “Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW”, Journal of Hydrology, 264(1-4): 69–86.326-335.
34. Parkin G., Birkinshawa S.J., Youngerb P.L., Raoc Z., Kirk S., 2007, “A numerical modelling and neural network approach to estimate the impact of groundwater abstractions on river flows”, Journal of Hydrology, 339(1-2): 15-28.
35. Pearson K., 1896, “Mathematical contributions to the theory of evolution─III. Regression, heredity and panmixia”, Philosophical Transactions of the Royal Society of London. Series A, 187: 253-318.
36. Peranginangin N., Sakthivadivel R., Scott N.R., Kendy E., Steenhuis T.S., 2004, “Water accounting for conjunctive groundwater/surface water management: case of the Singkarak–Ombilin River basin, Indonesia”, Journal of Hydrology, 292(1-4): 1-22.
37. Rojstaczer S., 1988, “Determination of fluid flow properties from the response of water levels in wells to barometric loading”, Water Resources Research, 24(11): 1927-1938.
38. Rutledge A.T., Daniel III C.C., 1994, “Testing an Automated Method to Estimate Ground-Water Recharge from Streamflow Records”, No.2-GROUND WATER, 32(2): 180-189.
39. Rutledge A.T.,1997, “Model-Estimated Ground-Water Recharge and Hydrograph of Ground-Water Discharge to a Stream”.
40. SCIENCE for DECISION MAKERS, 2007, ‘Groundwater Recharge’, Australian Government Bureau of Rural Sciences.
41. Sophocleous M.A., 1991, “Combining the soilwater balance and water-level fluctuation methods to estimated natural groundwater recharge practical aspects”, Journal of Hydrology, 124(3-4): 229-241.
42. Sugeno M., Kang G.T., 1988, “Structure identification of fuzzy model”, Fuzzy Sets and Systems, 28(1): 15-33.
43. Takagi T., Sugeno M., 1985, “Fuzzy identification of systems and its applications to modeling and control”, IEEE Transactions on Systems Man and Cybernetics, 15(1): 116-132.
44. Taormina R., Chau L.W., Sethi R., 2012, “Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon”, Engineering Applications of Artificial Intelligence, 25(8): 1670-1676.
45. Tayfur G., Singh V.P., F.ASCE, 2006, “ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff”, Journal of Hydraulic Engineering, 132(12):1321-1330.
46. Tutmez B., Hatipoglu Z., Kaymak U., 2006, “Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system”, Computers and Geosciences, 32(4): 421–433.
47. Van der Kamp G., Gale J.E., 1983, “Theory of earth tides and barometric effects in porous formations with compressible grains”, Water Resources Research, 19(2): 538-544.
48. 張斐章、張麗秋,2010,類神經網路導論─原理與應用,滄海書局。
49. 王士榮、林宏奕、李馨慈、徐國錦、黃智昭、張閔翔、李振誥,2012,「應用三維數值模式評估濁水溪中游山區地下水安全出水量」,農業工程學報,58 (1),1-12。
50. 江衍銘、張麗秋、張斐章,2002,「回饋式類神經網路於二階段即時流量預測」,臺灣水利,第50卷,第2期,第15-21頁。
51. 李品輝,2009,「以類神經網路探討全台蒸發量區域性分類與推估之成效」,國立臺灣大學生物環境系統工程學研究所碩士論文。
52. 林承賢,2012,「以類神經網路建構濁水溪流域地下水位推估模式」,國立台灣大學碩士論文。
53. 徐年盛、林尉濤、陳敬文,2009,「運用類神經網路預測濁水溪
54. 徐年盛、林尉濤、陳敬文,2009,「運用類神經網路預測濁水溪沖積扇地下水位變化之研究」,中國土木水利工程學刊,第21卷,第3期,第285-293頁。
55. 徐年盛、魏志強、陳敬文、陳俊廷,2009,「應用類神經網路於地面地下水聯合運用之硏究 --以雲林地區為例」,海峽兩岸水利科技交流研討會。
56. 高慧珊,2007,「以自組特徵映射網路推估蒸發量」,國立臺灣大學生物環境系統工程學研究所碩士論文。
57. 張良正、陳宇文、朱宏杰、黃浚瑋,2008,「遺傳演算法與類神經網路於地表地下聯合營運之應用」,農業工程學報,第54卷,第2期,第81-93頁。
58. 張凱堯、張斐章,2007,「反傳遞模糊類神經網路於抽水站操作之應用」,農業工程學報,第53卷,第1期,第82-91頁。
59. 張琬渝,2013,「濁水溪流域地下水位抬升機制及補注量之研究」,國立台灣大學碩士論文。
60. 曹以松,1995,『地下水』,中國土木水利工程學會。
61. 許弘政、張麗秋,2009,「模糊控制模式於颱洪時期水庫即時操作之研究,臺灣水利,第57卷,第4期,第87-101頁。
62. 陳宗顯,2006,「降雨引致地下水位變化之研究 - 以那菝、六甲與東和地下水位觀測井為例」,國立成功大學水利及海洋工程研究所博士論文。
63. 陳宗顯、詹錢登、陳伸賢、曾鈞敏,2005,「降雨和地下水位變化之相關性研究」,台灣水利,第53卷,第4期,第1-12頁。
64. 陳聖傑,2012,「地下水位之主成分分係-以濁水溪沖積扇為例」,國立成功大學資源工程學系碩士論文。
65. 經濟部中央地質調查所,2010,「台灣山區地下水資源調查研究整體計畫-第一期,台灣中段山區地下水資源調查與評估成果報告書」。
66. 經濟部中央地質調查所,2010,「臺灣地區地下水區水文地質調查及地下水資源評估─地下水補注潛勢評估與地下水模式建置」。
67. 經濟部水利署,2008,「地震與地下水文異常變化分析研究(3/4)」。
68. 經濟部水利署,2012,「中部山區水資源與地下水補注交互機制之探討」。
69. 農業工程學會,1999,「彙編『台灣地區地下水--濁水溪沖積扇篇』」。
70. 鄭遠、陳美惠、王裕民、李振誥,2003,「地表水與地下水灌區水資源聯合運用之研究:以屏東隘寮圳灌區為例」,農業工程學報,第49卷,第4期,第61 -74頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56124-
dc.description.abstract水資源匱乏係目前全球共同面臨的問題,臺灣受限於地形及降雨分佈不均,大部份雨水無法被利用,地下水因成本低廉,使其成為相當重要之可用水資源,如何有效的保育及補注地下水資源已成為重要的議題。濁水溪流域於扇頂上游地區及沖積扇扇頂為良好的地下水補注區,惟因大量抽取地下水的結果,引發嚴重地層下陷問題,為能即時掌握及預測地下水位變動趨勢,針對未來可能發生地層下陷之區域,提出因應對策,本研究蒐集與整理濁水溪流域內之主要河川流量站、地下水位站及雨量站等長期觀測資料,探討扇頂上游地區及沖積扇扇頂的降雨、河川流量、地下水間之關係,並建置地下水位推估模式,俾作為中部地區地層下陷防治之參據。
本研究採用2002至2011年地下水位、河川流量及降雨量之水文因子資料,透過相關性分析探討月平均地下水位與月平均水文因子之影響關係,並藉由人工智慧可處理複雜非線性問題之特性,應用倒傳遞類神經網路建構長時距地下水位推估模式;分析比較多種模式架構(不同輸入因子之組合),結果顯示加入地下水位、雨量、流量及放流量之模式具有良好之推估表現(相關性大於0.8);比較不同輸入因子組合對模式之改善率,作為地下水模擬模式之架構依據,並對建構完成的模擬模式之輸出項(地下水位)進行輸入項因子偏微分,藉由各輸入因子(雨量、流量、放流量)微分值之正負值及分佈情形,探討各輸入項於模式中與輸出項之正負向相關性;最後利用敏感度分析方法,探討雨量增加時,各站地下水位變動趨勢,進一步掌握地面水對地下水的影響機制,以有效運用於水資源管理。
zh_TW
dc.description.abstractThe shortage of water resources is a global problem. Due to the steep slopes and gradients of rivers, rapid flows and uneven spatio-temporal rainfall distributions in Taiwan, most of rainfalls flow directly into the ocean. Groundwater has become an important water resource because of its low cost and easy extraction. The upstream zone and the proximal alluvial fan of the Zhuoshui River are good natural groundwater recharge areas. However, the over extraction of groundwater occurs in the coastland of southwestern Taiwan, which results in serious land subsidence. To obtain and estimate the trend of groundwater level variations for making countermeasures in response to future possible land subsidence areas, this study establishes the relationships between rainfall, streamflow and groundwater level and constructs intelligent groundwater level estimation models for the upstream zone and the proximal alluvial fan of the Zhuoshui River basin based on long-term observed data of streamflow, groundwater level and rainfall, which can provide valuable information for the prevention and treatment of land subsidence.
In this study, data of groundwater level, streamflow and rainfall recorded in the Jhuoshuei River basin during 2002-2011 were obtained from the Water Resources Agency, Taiwan. The correlation analysis is first applied to building the relationships between monthly mean groundwater level and monthly mean streamflow as well as monthly mean rainfall. Artificial neural networks (ANNs), which resemble the human thinking process and possess a great ability to handle non-linear complex systems, are implemented to configure estimation models. By taking various input combinations into account, the most suitable estimation model of groundwater level can be established by the back propagation neural network (BPNN). The results demonstrate that the constructed estimation models can suitably estimate monthly groundwater level with high correlation (larger than 0.8).
For investigating the mechanism of groundwater level variation, a sensitivity analysis is then conducted on input variables of the estimation model by using the partial derivative method. Based on the distributions of the partial derivative values corresponding to each inputs (rainfall, streamflow and discharge), we establish the relationships between inputs and output (groundwater level) and identify rainfall as the most significant key factor. Then the impacts of rainfall amount on groundwater level variation can be obtained by the sensitivity analysis. The results of the proposed approach can be used as a valuable reference to water resources management and conservation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:16:11Z (GMT). No. of bitstreams: 1
ntu-103-R01622042-1.pdf: 4624361 bytes, checksum: 2ed0a0bb790cec5d4e71564a47b85231 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents謝誌 II
摘要 IV
Abstract V
目錄 VII
圖目錄 IX
表目錄 X
第一章 緒論 1
1-1 研究緣起及目的 1
1-2 研究架構 2
第二章 文獻回顧 4
2-1 地面水與地下水位變動特性分析 4
2-2 類神經網路 5
第三章 理論概述 8
3-1 類神經網路 8
3-2 倒傳遞類神經網路(BPNN) 11
3-3 相關性分析 16
3-4 敏感度分析(sensitivity analysis) 18
3-5 評估指標 19
第四章 研究案例 21
4-1 研究區域概述 21
4-2 資料蒐集與處理 24
4-2-1資料蒐集 24
4-2-2資料補遺 26
4-2-3資料校正 31
4-3 地面水與地下水之各站基本特性分析 35
第五章 結果與討論 40
5-1 長時距地下水位歷線推估模式 40
5-2 長時距地下水位歷線模擬模式 57
5-3 敏感度分析 63
第六章 結論與建議 70
6-1 結論 70
6-2 建議 71
參考文獻 73
附錄 81
dc.language.isozh-TW
dc.title建置智慧型地下水位推估模式-以濁水溪水系為案例zh_TW
dc.titleConstruct intelligent groundwater level estimation models–A case study at Zhuoshui River Basin in Taiwanen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾鈞敏(Chung-Min Tseng),陳永祥(Yung-Hsiang Chen),張麗秋(Li-Chiu Chang)
dc.subject.keyword地下水位,類神經網路,敏感度分析,倒傳遞類神經網路,水資源管理,偏微分,zh_TW
dc.subject.keywordGroundwater level,Artificial neural network (ANN),Sensitivity analysis,Water resources management,Back propagation neural network (BPNN),Partial derivative,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2014-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved