請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56116完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏 | |
| dc.contributor.author | Chiao-Ying Lin | en |
| dc.contributor.author | 林巧瑩 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:15:56Z | - |
| dc.date.available | 2016-02-03 | |
| dc.date.copyright | 2015-02-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | Armstrong, J. A., Bloembergen N., et al. (1962). 'Interactions between Light Waves in a Nonlinear Dielectric.' Physical Review 127(6): 1918-1939.
Astrid J. and Werner P. (2009), Drosophila melanogaster as a model organism of brain diseases. J. Mol. Sci. 10(2): 407-40. Babcock, D. T., C. Landry, and M. J. Galko. (2009), “Cytokine signaling mediates UV-induced nociceptive sensitization in Drosophila larvae.” Curr. Biol. 19:799- 806. Benzer, S. (1967), “Behavioral mutants of drosophila isolated by countercurrent distribution”. Proc. Natl. Acad. Sci. USA 58:1112- 1119. Berman, B., and Duncan M. R. (1990), “Pentoxifylline Inhibits the Proliferation of Human Fibroblasts Derived from Keloid, Scleroderma and Morphea Skin and Their Production of Collagen, Glycosaminoglycans and Fibronectin”, British Journal of Dermatology, vol. 123: 339-346. Bishop, T., D. W. Hewson, P. K. Yip, M. S. Fahey, D. Dawbarn, A. R. Young, and S. B. McMahon (2007), ” Characterisation of ultraviolet-B-induced inflammation as a model of hyperalgesia in the rat.” Pain 131:70-82. Bloembergen, N. and Pershan, P. S. (1962). 'Light waves at boundary of nonlinear media.' Physical Review 128(2): 606-622. Boppart S. A., Tearney G. J., Bouma B. E., Southern J. F., Brezinski M. E., and Fujimoto J. G. (1997), “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. 94: 4256–4261. Boyd R. W. (2003), Nonlinear Optics. Academic Press, 2nd ed. Campagnola, P. J., Millard, A. C., Terasaki, M., Hoppe, P. E., Malone, C. J. and Mohler, W. A. (2002). 'Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues.' Biophysical Journal 82(1): 493- 508. Canioni L., Rivet S., Sarger L., Barille R., Vacher P., and Voisin P. (2001), “Imaging of Ca2+ intracellular dynamics with a third-harmonic generation microscope,” Opt. Lett.26: 515-517. Chu, S. W., Chen, I. H., Liu, T. M., Chen, P. C., Sun, C. K. and Lin, B. L. (2001). 'Multimodal nonlinear spectral microscopy based on a femtosecond Cr : forsterite laser.' Optics Letters 26(23): 1909-1911. Chu S.-W., Chen I-S., Liu T.-M., Sun C.-K., Lee S.-P., Lin B.-L., Cheng P.-C., Kuo M.-X., Lin D.-J., and Liu H.-L. (2002), “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208: 190-200. Chu S.-W., Chen S.-Y., Tsai T.-H., Liu T.-M., Lin C.-Y., Tsai H.-J., and Sun C.-K. (2003), “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Optics Express 11: 3093-3099. Chu, S. W., Chen, S. Y., Chern, G. W., Tsai, T. H., Chen, Y. C., Lin, B. L. and Sun, C. K. (2004). 'Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy.' Biophysical Journal 86(6): 3914-3922. Damian DL, Barnetson RS, Halliday GM. (1999), “Low-dose UVA and UVB have different time courses for suppression of contact hypersensitivity to a recall antigen in humans.” J. Invest. Der- matol. 112: 939–44. Davies, S. L., C. Siau, and G. J. Bennett (2005), “Characterization of a model of cutaneous inflammatory pain produced by an ultraviolet irradiation-evoked sterile injury in the rat.” J. Neurosci. Methods 148:161-166. Denk W., Strickler J. H., and Webb W.W. (1990), “2-Photon Laser Scanning Fluorescence Microscopy”, Science 248 (4951): 73-76. Debarre D., Supatto W., Pena A. M., Fabre A., Tordjmann T., Combettes L., Schanne-Klein M. C., and Beaurepaire E. (2006), “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nature Methods, vol. 3(1): 47– 53. Elrod-Erickson, M., S. Mishra, and D. Schneider (2000), “Interactions between the cellular and humoral immune responses in Drosophila.” Curr. Biol. 10:781-784. Evans, C. J., and U. Banerjee (2003), “Transcriptional regulation of hematopoiesis in Drosophila.” Blood Cells Mol. Dis. 30:223-228. Ferrandon, D., J. L. Imler, C. Hetru, and J. A. Hoffmann (2007), “The Drosophila systemic immune response: sensing and signaling during bacterial and fungal infections.” Nat. Rev. Immunol. 7:862-874. Florsheimer, M., Bosch, M., Brillert, C., Wierschem, M. and Fuchs, H. (1998). 'Second-harmonic imaging of surface order and symmetry.' Thin Solid Films 329: 241-246. Foster F. S., Pavlin C. J., Harasiewicz K. A., Christopher D.A., and Turnbull D. H. (2000), “Advances in ultrasound biomicroscopy,” Ultrasound in Med. Biol. 26: 1– 27. Franc, N. C., P. Heitzler, R. A. Ezekowitz, and K. White (1999). “Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila.” Science 284:1991-1994. Franken, P. A., Hill, A. E., Peters, C. W. and Weinreich, G. (1961). 'Generation of optical harmonics.' Physical Review Letters 7(4): 118-120. Freund, I. and Deutsch, M. (1986). 'Second-harmonic microscopy of biological tissue.' Optics Letters 11(2): 94-96. Galko, M. J., and M. A. Krasnow (2004), “Cellular and genetic analysis of wound healing in Drosophila larvae.” PLoS Biol. 2:E239. Gannaway, J. N. and Sheppard, C. J. R. (1978). 'Second-harmonic imaging in scanning optical microscope.' Optical and Quantum Electronics 10(5): 435-439. Goppert-Mayer M. (1931), “Uber Elementarakte mit zwei Quantensprungen”, Ann. Phys. (Paris) 9: 273. Guo, Y. C., Ho, P. P., Savage, H., Harris, D., Sacks, P., Schantz, S., Liu, F., Zhadin, N. and Alfano, R. R. (1997). 'Second-harmonic tomography of tissues.' Optics Letters 22(17): 1323-1325. Han, X., Burke R. M., Zettel M. L., Tang P., and Brown E. B. (2008), “Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma.” Optics Express, vol. 16: 1846-1859. Hellwart, R. and Christen, P. (1974). 'Nonlinear optical microscopic examination of structure in polycrystalline ZnSe.' Optics Communications 12(3): 318-322. Kaiser W. and Garrett C. G. B. (1961), “2-Photon Excitation in Caf2 - Eu2+.” Physical Review Letters 7(6): 229. Konig K. (2000), “Multiphoton microscopy in life science,” Journal of Microscopy 200: 83-104. Kolthammer W. S., Barnard D., Carlson N., Edens A. D., Miller N. A. and Saeta P. N. (2005). 'Harmonic generation in thin films and multilayers.' Physical Review B 72(4): 04544601-04544615. Kortum R. Richards and SevickMuraca E. (1996), “Quantitative optical spectroscopy for tissue diagnosis,” Annual Review Of Physical Chemistry, vol. 47: 555– 606. Lanot, R., D. Zachary, F. Holder, and M. Meister (2001), “Postembryonic hematopoiesis in Drosophila.” Dev. Biol. 230:243-257. Lewis, K. G., L. Bercovitch, Dill S. W., and Robinson-Bostom L. (2004), “Acquired disorders of elastic tissue: Part II. Decreased elastic tissue.” Journal of the American Academy of Dermatology, vol. 51: 165-185. Lewis, K. G., Dill S. W., Wilkel C. S., and Robinson-Bostom L. (2004), “Mid-dermal elastolysis preceded by acute neutrophilic dermatosis.” Journal of Cutaneous Pathology, vol. 31: 72-76. Longuet-Perret I, Schmitt D, Viac J. (1998), “Tumour necrosis factor- alpha is involved in the contrasting effects of ultraviolet B and ultraviolet A1 radiation on the release by normal human keratinocytes of vascular permeability factor. “Br. J. Dermatol. 138: 221–4. Louie A. Y., Huber M. M., Ahrens E. T., Rothbacher U., Moats R., Jacobs R. E., Fraser S. E., and Meade T. J. (2000), “In vivo visualization of gene expression using magnetic resonance imaging,” Nat. Biotech. 18: 321-325. Martin, P., and S. J. Leibovich (2005), “Inflammatory cells during wound repair: the good, the bad and the ugly.” Trends Cell Biol. 15:599-607. Muller M., Squier J., Wilson K. R., and Brakenhoff G. J. (1998), “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191: 266-274. Niethammer, P., C. Grabher, A. T. Look, and T. J. Mitchison (2009), “A tissue- scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish.” Nature 459:996-999. Oheima M., Michael D. J., Matthias Geisbauer, Madsen D., Chow R. H. (2006), “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches.” Advance Drug Delivery Reviews Vol. 58: 788-808. Paladi, M., and U. Tepass (2004), “Function of Rho GTPases in embryonic blood cell migration in Drosophila.” J. Cell Sci. 117:6313-6326. Pandey U. B. and Nichols C. D. (2011), “Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery.” Pharmacol. Rev. 63(2): 411-36. Pastor-Pareja, J. C., M. Wu, and T. Xu (2008), “An innate immune response of blood cells to tumors and tissue damage in Drosophila.” Dis. Model Mech. 1:144-154; discussion 153. Peleg G., Lewis A., Linial M., and Loew L. M. (1999), “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. 96: 6700-6704. Petri, B., and M. G. Bixel (2006), “Molecular events during leukocyte diapedesis.” FEBS J. 273:4399-4407. Phillips C. L., Arend L. J., Filson A. J., Kojetin D. J., Clendenon J. L., Fang S., and Dunn K. W. (2001), “Three-dimensional imaging of embryonic mouse kidney by two-photon microscopy,” Am. J. Pathol. 158: 49-55. Plotnikov S. V., Millard A. C., Campagnola P. J., and Mohler W. A. (2006), “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophysical J., 90: 693-703. Reeve VE, Bosnic M, Boehm-Wilcox C, Nishimura N, Ley RD (1998), “Ultraviolet A radiation (320–400 nm) protects hairless mice from immunosuppression induced by ultraviolet B radiation (280–320 nm) or cis-urocanic acid.” Int. Arch. Allergy Immunol. 115: 316–22. Reiter L. T. et al. (2001), A systematic of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11(6): 1114-25. Saloma C. Palmes and Saloma C. (2000), “Long-depth imaging of specific gene expressions in whole-mount mouse embryos with single-photon excitation confocal fluorescence microscopy and FISH,” J. Struct. Bio. 131: 56–66. Seong, S. Y., and P. Matzinger (2004), “Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses.” Nat. Rev. Immunol. 4:469-478. Shen, Y. R. (1989). 'Surface-properties probed by second-harmonic and sum-frequency generation.' Nature 337(6207): 519-525. Skov L, Hansen H, Allen M et al. (1998), “Contrasting effects of ultra- violet A1 and ultraviolet B exposure on the induction of tumour necrosis factor-alpha in human skin” Br. J Dermatol. 38: 216–20. Squirrell J. M., Wokosin D. L., White J. G., and Bavister B. D. (1999), “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotech. 17: 763-767. Stramer, B., W. Wood, M. J. Galko, M. J. Redd, A. Jacinto, S. M. Parkhurst, and P. Martin (2005), “Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration.” J. Cell Biol. 168:567-573. Tinette S., Zhang L. and Robichon A. (2004), Cooperation between Drosophila filies in searching behavior. Genes Brain Behav. 3(1): 39-50. Wolf F. W. and Heberlein U. (2003), Invertebrate models of drug abuse. J. Neurobiol. 54(1): 161-78. Wood, W., C. Faria, and A. Jacinto (2006), “Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster.” J. Cell Biol. 173:405-416. Yelbuz T. M., Choma M. A., Thrane L., Kirby M. L., and Izatt J. A. (2002), “Optical coherence tomography: A new high-resolution imaging technology to study cardiac development in chick embryos,” Circulation 106: 2771-2774. Yelin D. and Silberberg Y. (1999), “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5: 169-175. Zettervall, C. J., I. Anderl, M. J. Williams, R. Palmer, E. Kurucz, I. Ando, and D. Hultmark (2004), “A directed screen for genes involved in Drosophila blood cell activation.” Proc. Natl. Acad. Sci. USA 101:14192-14197. Zipfel W. R., Williams R. M., Christie R., Nikitin A. Y., Hyman B. T., and Webb W. W. (2003), “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proceedings Of The National Academy Of Sciences Of The United States Of America, vol. 100(12): 7075– 7080. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56116 | - |
| dc.description.abstract | 果蠅一直是發展生物學亮眼的活體模型。其體積小,容易繁殖並可大量飼養,因此果蠅成了生物學家研究的新寵兒。已有許多研究說明紫外線對於生物體造成傷害,在果蠅模型上也指出照射紫外線會造成DNA 的變異,導致其子代會有基因缺損的問題。太陽光90%的波長來自於紫外線光(UVA),其波長介於315-400 奈米(nm)之間,波長越長穿透力越深,可以達到真皮層導致曬黑並造成生物體表的傷害。
本研究選用UVA 400nm 紫外光刺激,觀察不同時間點累積性的UVA刺激果蠅幼蟲,使幼蟲產生曬傷(sunburn),並利用多種非侵入式顯微鏡系統,研究果蠅幼蟲的行為模式變化與細胞狀態的改變及肌肉結構與影像強度的分析。藉由非侵入式的顯微鏡觀察,從巨觀的果蠅行為到微觀的細胞層次,發現經UVA刺激後的果蠅幼蟲在溫水逃脫實驗下,幼蟲的行為會隨著UVA照射時間的累加,其扭曲身體的次數會增加,運動速率也有明顯的差異,代表其曬傷後導致幼蟲對於水溫的感受越劇烈。而雙光子顯微鏡下觀察到表皮細胞經UVA傷害後的影像,表皮細胞逐漸壞死,血球細胞因發炎反應而聚集。果蠅體內的肌肉結構也可透過二倍頻顯微鏡觀察到隨著時間UVA 的累積傷害,其肌球蛋白越來越鬆散,並觀察到有雙重帶(double band)的產生。 結合多種模式的影像分析方法,提供了非侵入式觀察果蠅幼蟲經UVA 傷害後巨觀到微觀的影像,提供對於研究果蠅或是其他生物體長期照射UVA的影像並瞭解曬傷的組織改變,除了表皮細胞損傷及發炎之外,對於淺層肌球蛋白的結構與功能也有相當程度的影響。 | zh_TW |
| dc.description.abstract | Drosophila larvae model is wildly used in the field of developmental biology.Since Drosophila are small in size, easily bred and can be kept in a large amount, they are now the new favorite of the biologists. There has been a many of researches on the mutant effect ultraviolet rays have on DNA, and there is no exception on the Drosophila model; ultraviolet rays cause damages on the DNA of the offspring. 90% of the sunlight consists of UVA, whose wavelength falls within the range of 315-400 nm. The longer the wavelength, the stronger the penetration through the skin, and UVA causes sun-tanned and damage to the surface of the body when it reaches dermis.
In this study we used 400 nm UVA as the stimulus to cause sunburn on the Drosophila larvae, observe its effect at different duration time points with multimodal non-invasive microscopy systems, and investigate the changes in the behavioral pattern and the status of the cells of the larvae, as well as analyze the muscle structure of the larvae and its image intensity. Through non-invasive microscope observation of the Drosophila from macro behavioral aspect to micro cellular aspect, this study found that the larvae struggled more times in the warm water escape experiment after the UVA stimulation; its movement rate also increased significantly, suggesting that sunburn causes larvae to be more sensitive to the water temperature. The necrosis of the epidermal cells and the aggregation of the hemocyte due to inflammation can be observed on the image of the epidermis layer under the two-photon microscope. The muscle structure and function of the larvae as the UVA exposure accumulated can also be observed through second harmonic generation microscopy, the myosin loosened and double band appeared. The combination of various image analyzing methods yielded macro and micro images of Drosophila larvae after UVA exposure in a non-invasive imaging, and provided insight into the tissue change after long-term UVA exposure and sunburn of Drosophila or other organisms; besides cellular damage and inflammation, UVA also exert an influence on superficial myosin structure and muscle function. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:15:56Z (GMT). No. of bitstreams: 1 ntu-103-D95921031-1.pdf: 12981525 bytes, checksum: 02b8cd0260be44d7e523084c2d0267a6 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書i
誌謝ii 中文摘要iv Abstractv 目錄vii 圖目錄ix 表目錄xi Chapter 1 Introduction1 1.1 Motivation1 1.2 Thesis organization2 Chapter 2 Basic Principles3 2.1 Ultraviolet A (UVA) irradiation3 2.2 Two-photon microscopy (TPM)5 2.3 Second harmonic generation microscopy11 2.4 Animal model: Drosophila melanogaster15 Chapter 3 Materials and Methods20 3.1 Drosophila larvae prepare20 3.2 Thermo water escape microscopy setup21 3.3 Two-photon microscopy (2PM) and second harmonic generation(SHG) microscopy systems setup22 Chapter 4 Multimodal microscopy imaging in Drosophila larvae26 4.1 Label-free imaging of Drosophila larvae by two-photon microscopy and second harmonic generation microscopy26 4.2 Imaging after UVA irradiation damage larvae using water thermal escape microscopy33 4.3 Imaging after UVA irradiation damage larvae using two-photon and second harmonic generation microscopy38 4.4 Discussion50 Chapter 5 Conclusion 53 REFERENCE56 PUBLICATION LIST64 | |
| dc.language.iso | en | |
| dc.subject | 紫外線 | zh_TW |
| dc.subject | 肌球蛋白 | zh_TW |
| dc.subject | 二倍頻 | zh_TW |
| dc.subject | 雙光子螢光顯微鏡 | zh_TW |
| dc.subject | myosin | en |
| dc.subject | second-harmonic generation | en |
| dc.subject | two-photon microscopy | en |
| dc.subject | ultraviolet ray | en |
| dc.title | 多模態顯微鏡觀察經紫外線照射損傷果蠅之研究 | zh_TW |
| dc.title | Multimodal microscopy imaging for UVA irradiation induced injury in Drosophila melanogaster | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 林啟萬 | |
| dc.contributor.oralexamcommittee | 曾明宗,林慶波,嚴震東,陳中明,趙本秀 | |
| dc.subject.keyword | 紫外線,雙光子螢光顯微鏡,二倍頻,肌球蛋白, | zh_TW |
| dc.subject.keyword | ultraviolet ray,two-photon microscopy,second-harmonic generation,myosin, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 12.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
