Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56107
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧彥文(Yen-Wen Lu)
dc.contributor.authorPing-Yi Hungen
dc.contributor.author洪秉毅zh_TW
dc.date.accessioned2021-06-16T05:15:40Z-
dc.date.available2017-09-05
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citationBio 101 1998. Newsletters:Function. Accessed 12 December, 2013, Available at: http://www.bio.davidson.edu/courses/Molbio/MolStudents/spring99/lauren/geneclean.html.
Nirmala Bardiya, Jae-Won Choi and Soo-Ik Chang. 2014. Analysis of single nucleotide polymorphism in human angiogenin using droplet-based microfluidics. BioChip Journal 8: 15-21.
Jean Berthier. 2008. Microdrops and Digital Microfluidics.1st ed. 323-326, William Andrew Inc.
Deborah J. Boles, Jonathan L. Benton, Germaine J. Siew, Miriam H. Levy, Prasanna K. Thwa, Melissa A. Sandahl, Jeremy L. Rouse, Lisa C. Perkins, Arjun P. Sudarsan, Roxana Jalili, Vamsee K. Pamula, Vijay Srinivasan, Richard B. Fair, Peter B. Gri ffi n, Allen E. Eckhardt and Michael G. Pollack. 2011. Droplet-based pyrosequencing using digital microfluidics. Analytical Chemistry 83: 8439-8447.
R. Boom, C. J. Sol, M. M. Salimans, C. L. Jansen, P. M. Wertheim-van Dillen and J. van der Noordaa. 1990. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 28: 495-503.
Shantelle Claassena, Elloise du Toit, Mamadou Kaba, Clinton Moodley, Heather J. Zar and Mark P. Nicol. 2013. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. Journal of Microbiological Methods 94: 103-110.
Shih-Kang Fan, Tsung-Han Hsieh and Di-Yu Lin. 2009. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Lab Chip 9: 1236-1242.
Shih-Kang Fan, Yao-Wen Hsu and Chiun-Hsun Chen. 2011. Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis. Lab Chip 11: 2500-2508.
Joseph Felsenstein. 1981. Evolutionary Trees from DNA Sequences A Maxim Likehood Approach. Journal of Molecular Evolution 17: 368-376.
Tao Geng, Ning Bao, Nammalwar Sriranganathanw, Liwu Li and Chang Lu. 2012. Genomic DNA extraction from cells by electroporation on an integrated microfluidic platform. Analytical Chemistry 84: 9632-9639.
David G. Ginzinger. 2002. Gene quantification using real-time quantitative PCR An emerging technology hits the mainstream. Experimental Hematology 30: 503–512.
Bjørn Ivar Haukanes and Catrine Kvam. 1993. Application of Magnetic Beads in Bioassays. Nature Biotechnology 11: 60-63.
Helmuth Hilz, Ulrich Wiegers and Peter Adamietz. 1975. Stimulation of Proteinase K Action by Denaturing Agents Application to the Isolation of Nucleic Acids and the Degradation of Masked Proteins. European Journal of Biochemistry 56: 103–108.
Mukesh Jain, Aashima Nijhawan, Akhilesh K. Tyagi and Jitendra P. Khurana. 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345: 646-651.
Mais J. Jebrail, Anupama Sinha, Samantha Vellucci, Ronald F. Renzi, Cesar Ambriz, Carmen Gondhalekar, Joseph S. Schoeniger, Kamlesh D. Patel and Steven S. Branda. 2014. World-to-digital-microfluidic interface enabling extraction and purification of RNA from human whole blood. Analytical Chemistry 86: 3856-3862.
Saulius Juodkazis, Naoki Mukai, Ryosuke Wakaki, Akira Yamaguchi, Shigeki Matsuo and Hiroaki Misawa. 2000. Reversible phase transitions in polymer gels induced by radiation forces. Nature 408: 178-181.
Kiho Kang, Jinsub Choi, Joong Hee Nam, Sang Cheon Lee, Kyung Ja Kim, Sang-Won Lee and Jeong Ho Chang. 2009. Preparation and Characterization of Chemically Functionalized Silica-Coated MagneticNanoparticles as a DNA Separator. The Journal of Physical Chemistry B 113: 536–543.
Jungkyu Kim, Michael Johnson, Parker Hill, Rahul S. Sonkul, Jongwon Kim and Bruce K. Gale. 2012. Automated microfluidic DNA/RNA extraction with both disposable and reusable components. Journal of Micromechanics and Microengineering 22: 015007.
Trevor L.Hawkins, Tara O'Connor-Morin, Aparna Roy and Cynthia Santillan. 1994. DNA purification and isolation using a solid-phase. Nucleic Acids Research, 22: 4543-4544.
D. C. Leslie, J. Li, B. C. Strachan, M. R. Begley, D. Finkler, L. A. Bazydlo, N. S. Barker, D. M. Haverstick, M. Utz and J. P. Landers. 2012. New detection modality for label-free quantification of DNA in biological samples via superparamagnetic bead aggregation. Journal of the American Chemical Society 134: 5689-5696.
Vivienne N. Luk, Gary CH. Mo and Aaron R. Wheeler. 2008. Pluronic Additives: A Solution to Sticky Problems in Digital Microfluidics. Langmuir 24: 6382 - 6389.
M.A. Marko, R. Chipperfield and H.C. Birnboim. 1982. A procedure for the large-scale isolation of highly purified plasmid DNA using alkaline extraction and binding to glass powder. Analytical Biochemistry 121: 382–387.
Kathryn A. Melzak, Chris S. Sherwood, Robin F. B. Turner and Charles A. Haynes. 1996. Driving Forces for DNA Adsorption to Silica in Perchlorate Solutions. Journal of Colloid and Interface Science 181: 635–644
Noha A. Mousa, Mais J. Jebrail, Hao Yang, Mohamed Abdelgawad, Pavel Metalnikov, Jian Chen, Aaron R. Wheeler and Robert F. Casper. 2009. Droplet-Scale Estrogen Assays in Breast Tissue, Blood,and Serum. Science Translational Medicine 1: 1ra2.
Wyatt C. Nelson and Chang-Jin Kim. 2012. Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review. Journal of Adhesion Science and Technology ahead-of-print: 1-25.
Alphonsus H. C. Ng, Kihwan Choi, Robert P. Luoma, John M. Robinson and Aaron R. Wheeler. 2012. Digital microfluidic magnetic separation for particle-based immunoassays. Analytical Chemistry 84: 8805-8812.
Zhihong Nie, Wei Li, Minseok Seo, Shengqing Xu and Eugenia Kumacheva. 2006. Janus and Ternary Particles Generated by Microfluidic Synthesis Design, Synthesis, and Self-Assembly. Journal of the American Chemical Society 128: 9408-9412.
Nick Oswald 2008. The Basics: How Phenol Extraction Works. Accessed 12 December, 2013, Available at: http://bitesizebio.com/384/the-basics-how-phenol-extraction-works/.
Phil Paik, Vamsee K. Pamula and Richard B. Fair. 2003. Rapid droplet mixers for digital microfluidic systems. Lab Chip 3: 253-259.
Hong Ren, Richard B. Fair, Michael G. Pollack and Edward J. Shaughnessy. 2002. Dynamics of electro-wetting droplet transport. Sensors and Actuators B: Chemical 87: 201–206.
A. Rival, D. Jary, C. Delattre, Y. Fouillet, G. Castellan, A. Bellemin-Comte and X. Gidrol. 2014. An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab Chip
Gaurav J. Shah and Chang-Jin Kim. 2009. Meniscus-Assisted High-Efficiency Magnetic Collection and Separation for EWOD Droplet Microfluidics. Journal of Microelectromechanical Systems 18: 363 - 375
Gaurav J. Shah, Jeffrey L. Veale, Yael Korin, Elaine F. Reed, H. Albin Gritsch and Chang-Jin Kim. 2010. Specific binding and magnetic concentration of CD8+ T-lymphocytes on electrowetting-on-dielectric platform. Biomicrofluidics 4: 44106.
Mohammad Shahriar, Md. Rashidul Haque, Shaila Kabir, Irin Dewan and Mohiuddin Ahmed Bhuyian. 2011. Effect of Proteinase-K on Genomic DNA Extraction. Stamford Journal of Pharmaceutical Sciences 4: 53-57.
Mohtashim H. Shamsi, Kihwan Choi, Alphonsus H. C. Ng and Aaron R. Wheeler. 2014. A digital microfluidic electrochemical immunoassay. Lab Chip 14: 547-554.
R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack and V. Pamula. 2008. Development of a digital microfluidic platform for point of care testing. Lab Chip 8: 2091-2104.
Ramakrishna S. Sista, Allen E. Eckhardt, Vijay Srinivasan, Michael G. Pollack, Srinivas Palanki and Vamsee K. Pamula. 2008. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8: 2188-2196.
Anna J Tüdős, Geert AJ Besselink and Richard BM Schasfoort. 2001. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab on a Chip 1: 83-95.
Kenneth Todar 2009. Streptococcus pyogenes and Streptococcal Disease Accessed 5 July 2014, Available at: http://www.textbookofbacteriology.net/streptococcus.html.
G. M. Whitesides. 2006. The origins and the future of microfluidics. Nature 442: 368-373.
Yen-Chun Yeh, I-Pei Lu and Shih-Kang Fan (2011). Dielectrophoresis Micropump for On-Chip Particles. Miniaturized Systems for Chemistry and Life Sciences: 1609-1611.
Jil A. Zeugin and James L. Hartley. 1985. Ethanpl Precipitation. FOCUS 7
P. Zumbo. 2012. Ethanpl Precipitation.
P. Zumbo. 2012. Phenol–chloroform extraction.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56107-
dc.description.abstract「個人化醫療」 (personalized medicine)是針對患者個體的差異,進行正確疾病檢驗並做出合適的醫療決策,以有效縮短疾病治療的時間。其主要的關鍵技術便是針對患者個體進行的「基因診斷」 (genetic testing)。而所謂的生物實驗室晶片 (Lab-on-chip),則是將一連串繁複的生化試驗處理的功能,縮小並整合在一片為小的晶片上。例如:在病患的血液樣本取得後到進行基因定序或診斷需進行生化處理程序。
本文是利用數位微流體(Digital Microfluidics)技術當作生物實驗室的平台,並且和磁珠結合使用,來進行DNA萃取。數位微流體以電場精準的控制微小單位體積液體,移動試驗所需反應之試劑,減少試劑用量和加熱孵化的過程,從90 nl的血液中取出約1..85×〖10〗^(-2) ng/μl的DNA。
試劑於晶片上均有獨立的路徑進入反應區,避免彼此間的交叉污染。同時,在晶片上利用磁珠進行DNA的萃取,免除了在傳統DNA萃取過程中繁複的離心分離程序。於磁珠的分離及清洗的過程中,透過電極的設計及操作,移去絕大部分的懸浮液體,確實的控制殘存的液體量,改善洗滌時的效率,降低操作過程的時間以及大幅減少試劑及樣本的消耗。
zh_TW
dc.description.abstractTo develop and realize the personalized medicine and point-of-care applications in genetic testing, the full sequences of lab processes should be integrated. DNA extraction is essential and often required for a sensitive nucleic acid testing.
This thesis introduces the implementation of magnetic beads (MB) based DNA extractions on electrowetting- based digital microfluidics (DMF). The reagents from two different extraction kits, ITRI and Agencourt Genfind v2, are characterized as a droplet on DMF. These droplets can be precisely manipulated by using electric signals, which simplifies the whole extraction procedures, and promises the possibility of process automation The results from the on-chip DNA extraction protocols are validated and quantified. DNA at 1.85 〖×10〗^(-2) ng/μl is successfully extracted from a droplet of 90 nl whole blood.
Finally, our DMF microchip has been optimized in the following three aspects: (1) it has independent paths of the electrodes for different reagents to avoid the cross-contamination problem. (2) It utilizes MBs to replace the complex centrifugation in tradition DNA exrtaction procedures. (3) Ratio separation electrodes are designed to re-suspend the MBs and to improve the efficiency of the wasing process. Therefore, our DMF microchip not only can successfully extract the DNA from whole blood, but also demonstrate the possibility to use less sample/reagent and shorter process time to purify DNA on chip for point-of-care genetic testing.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:15:40Z (GMT). No. of bitstreams: 1
ntu-103-R01631028-1.pdf: 7362474 bytes, checksum: f3cdd3baefefaa0d9b94f03c0a19d102 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsList of Figures xii
List of Tables xii
Chapter 1 Introduction 1
1.1 Genetic Testing 1
1.2 DMF Technology 2
1.3 Overall Structure of Thesis 3
Chapter 2 Literature Review 5
2.1 DNA Extraction Methods 6
2.2 Magnetic Beads 9
2.3 MBs in DMF 11
2.4 MB in Nucleic Acid Extraction on DMF Platform 13
Chapter 3 Materials and Methods 14
3.1 Materials 15
3.2 Protocol of MBs-Based DNA Extraction 16
3.1.1 MBs-Based DNA Extraction Kit from ITRI 16
3.1.2 Commercial DNA Extraction Kit (Agencourt Genfind v2) 18
3.3 Chip Design 22
3.4 Device Fabrication 24
3.5 Basic Droplet Manipulation on DMF chip 30
3.6 DNA Extraction Validation Strategy 34
Chapter 4 Results and Discussion 39
4.1 Droplet Manipulation 40
4.2 MBs Manipulation 50
4.3 On-chip DNA Extraction 63
4.4 DNA Extraction Validation 71
4.5 DNA Extraction Kit -- Agencourt Genfind v2 76
Chapter 5 Conclusions 82
5.1 Conclusions 82
5.2 Future Prospects 84
Appendix I 85
Reference 86
dc.language.isozh-TW
dc.title利用磁珠與數位微流體進行DNA萃取zh_TW
dc.titleMagnetic Bead-based DNA Extraction on Digital Microfluidics Platformen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee范士岡(Shih-Kang Fan),陳林祈(Lin-Chi Chen),李爾芳(Erh-Fang Lee)
dc.subject.keyword個人化醫療,定點照護檢驗,生物實驗室晶片,DNA 萃取,數位微流體,磁珠,zh_TW
dc.subject.keywordDNA extraction,electrowetting,digital microfluidics,magnetic beads,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2014-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
7.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved