Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56101
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王俊能(Chun-Neng Wang)
dc.contributor.authorYun-Yu Chenen
dc.contributor.author陳運佑zh_TW
dc.date.accessioned2021-06-16T05:15:29Z-
dc.date.available2019-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citationAbramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics International 11: 36-42
Ando S, Asano T, Tsushima S, Kamachi S, Hagio T, Tabei Y (2005) Changes in gene expression of putative isopentenyltransferase during clubroot development in Chinese cabbage (Brassica rapa L.). Physiological Molecular Plant Pathology 14: 59–67
Bergougnoux V, Zalabak D, Jandova M, Novak O, Wiese-Klinkenberg A, Fellner M, Blazquez MA (2012) Effect of blue light on endogenous isopentenyladenine and endoreduplication during photomorphogenesis and de-etiolation of tomato (Solanum lycopersicum L.) seedlings. PLoS ONE 7: e45255. doi:10.1371/journal.pone.0045255
Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trend in Plant Science 5: 110-115
Brenner WG, Romanov GA, Kollmer I, Burkle L, Schmulling T (2005) Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. The Plant Journal 44: 314-33
Brugiere N, Humbert S, Rizzo N, Bohn J, Habben JE (2008) A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Cytokinin biosynthesis in maize. Plant Physiology 67: 215-229
Burtt BL (1970) Studies in the Gesneriaceae of the Old World XXXI: Some aspects of functional evolution. Notes from the Botanic Garden Edinburgh 30: 1-10
Chang JY (2010) Study of inflorescence identity and floral determinacy genes on inflorescence transition in Titanotrichum, MSc disertation, National Taiwan University
Chiara M, Horner DS, Spada A (2013) De Novo Assembly of the Transcriptome of the Non-Model Plant Streptocarpus rexii Employing a Novel Heuristic to Recover Locus-Specific Transcript Clusters. PLoS ONE 8: e80961
Chimnaronk S, Forouhar F, Sakai J, Yao M, Tron CM, Atta M, Fontecave M, Hunt JF, Tanaka I (2009) Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon. Biochemistry 48: 5057-5065
Chu HM, Ko TP, Wang AH (2009) Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides. Nucleic Acids Research 38: 1738-1748
Dauelsberg P, Matus JT, Poupin MJ, Leiva-Ampuero A, Godoy F, Vega A, Arce-Johnson P (2011) Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine. Journal of Plant Physiology 168: 1667-1674
Dihanich ME, Najarian D, Clark R, Gillman EC, Martin NC, Hopper AK (1987) Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Molecular Cell Biology 7: 177-184
Fambrini M, Pugliesi C (2013) Usual and unusual development of the dicot leaf: involvment of transcription factors and hormones. Plant Cell Reports 32: 899-922
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucliec Acid Research 34: 247-251
Frebort I, Kowalska M, Hluska T, Frebortova J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany 62: 2431-2452
Gajdošovă S, Spichal L, Kaminek M, Hoyerova K, Novak O, Dobrev P, Galuszka P, Klima P, Gaudinova A, Źižkova E, Hanuš J, Dančak M, Travnicek B, Pešek B, Krupička M, Vaňkova R, Strnad M, MotykaV (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany 62:2827-2840
Galinha C, Bilsborough G, Tsiantis M (2009) Hormonal input in plant meristems: A balancing act. Seminars in Cell & Developmental Biology 20: 1149-1156
Golovko A, Sitbon F, Tillberg E, Nicander B (2002) Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana. Plant Molecular Biology 49: 161-169
Gray J, Wang J, Gelvin SB (1992) Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression. Journal Bacteriology 174: 1086-1098
Harrison J, Moller M, Langdale J, Cronk Q, Hudson A (2005) The role of KNOX genes in the evolution of morphological novelity in Streptocarpus. The Plant Cell 17: 430-443
Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany 59: 75-83
Huang BH (2009) Loss of anisocotyly in European and its evolutionary consequence. MSc thesis. National Taiwan University
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology 15:1560-5
Jong K (1970) Developmental aspects of vegetative morphology in Streptocarpus. PhD dissertation. University of Edinburg
Jong K, Burtt BL (1975) The evolution of morphological novelity exemplified in the growth patterns of some Gesneriaceae. New Phytologist 78: 297-311
Konevega AL, Soboleva NG, Makhno VI, Peshekhonov AV, Katunin VI (2006) The effect of modification of tRNA nucleotide-37 on the tRNA interaction with the P- and A-site of the 70S ribosome Escherichia coli. Molecular Biology 40: 669-683
Kyozuka J (2007) Control of shoot and root meristem function by cytokinin. Current Opinion in Plant Biology 10:442-446
Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438: 1172-1175
Liu Y, Gu D, Ding Y, Wang Q, Li G, Wang S (2011a) The relationship between nitrogen, auxin and cytokinin in the growth regulation of rice (Oryza sativa L.) tiller buds. Australian Journal of Crop Science 5: 1019
Liu Y, Xu J, Ding Y, Wang Q, Li G, Wang S (2011b) Auxin inhibits the outgrowth of tiller buds in rice (Oryza sativa L.) by downregulating OsIPT expression and cytokinin biosynthesis in nodes. Australian Journal of Crop Science 5: 169–174.
Liu Z, Lv Y, Zhang M, Liu Y, Kong L, Zou M, Lu G, Gao J, Yu X (2013) Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 14: 594.
Ma QH, Liu YC (2009) Expression of isopentenyl transferase gene (ipt) in leaf and stem delayed leaf senescence without affecting root growth. Plant Cell Reports 28: 1759-1765
Mantegazza R, Moller M, Harrison J, Fior S, De Luca C, Spada A (2007) Anisocotyly and meristem initiation in an unorthodox plant, Streptocarpus rexii (Gesneriaceae). Planta 225: 653-663
Mantegazza R, Tononi P, Moller M, Spada A (2009) WUS and STM homologs are linked to the expression of lateral dominance in the acaulescent Streptocarpus rexii (Gesneriaceae). Planta 230: 529-542
Matsuo S, Kikuchi K, Fukuda M, Honda I, Imanishi S (2012) Roles and regulation of cytokinins in tomato fruit development. Jounral of Experimental Botany 63: 5569-5579
Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F (2009) TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25: 126-127
Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. The Plant Journal 37:128-38
Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proceeding of the National Academy of Sciences of the U.S.A 103: 16598-16603
Moller M, Cronk Q (2001) Evolution of morphological novelity: A phylogenetic analysis of growth pattern in Streptocarpus (Gesneriaceae). Evolution 55: 918-929
Nishii K, Ho MJ, Chou YW, Gabotti D, Wang CN, Spada A, Moller M (2014) GA2 and GA20-oxidase expression are associated with the meristem position in Sterptocarpus rexii (Gesneriaceae). Plant Growth Regulation 72: 123-140
Nishii K, Kuwabara A, Nagata T (2004) Characterization of anisocotylous leaf formation in Streptocarpus wendlandii (Gesneriaceae): significance of plant growth regulators. Annals of Botany 94: 457-467
Nishii K, Nagata T (2007) development analyses of the phyllomorph formation in the rosulate species Streptocarpus rexii (Gesneriaceae). Plant systematics and Evolution 265: 135-145
Nishii K, Nagata T, Wang CN (2009) High morphological plasticity in Gesneriaceae meristems: reversions in vegetative and floral development. Trends in Developmental Biology 4: 33-40
Nishii K, Nagata T, Wang CN, Moller M (2012a) Light as environmental regulator for germination and macrocotyledon development in Streptocarpus rexii (Gesneriaceae). South African Journal of Botany 81:50-60
Nishii K, Wang C-N, Spada A, Nagata T, Moller M (2012b) Gibberellin as a suppressor of lateral dominance and inducer of apical growth in the unifoliate Streptocarpus wendlandii (Gesneriaceae). New Zealand Journal of Botany 50: 267–287
Patil G, Nicander B (2013) Identification of two additional members of the tRNA isopentenyltransferase family in Physcomitrella patens. Plant Molecular Biology 82: 417-426
Peng J, Peng F, Zhu C, Wei S (2008) Molecular cloning of a putative gene encoding isopentenyltransferase from pingyitiancha (Malus hupehensis) and characterization of its response to nitrate. Tree Physiology 28: 899-904
Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (RESTc) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acid Reseach 30: e36
Rijavec T, Jain M, Dermastia M, Chourey PS (2011) Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize. Annals of Botany 107: 1235-1245
Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283: 1541-1544
Rosenblum IM, Basile DV (1984) Hormonal regulatoin of morphogenesis in Streptocarpus and its relevance to evolutionary history of the Gesneriaceae. Botanicle Society of America 71: 52-64
Sakakibara H (2006) CYTOKININS: Activity, Biosynthesis, and Translocation. Annual Review of Plant Biology 57: 431-449
Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M (2006) Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiokogy 142: 54-62
Sakano Y, Okada Y, Matsunaga A, Suwama T, Kaneko T, Ito K, Noguchi H, Abe I (2004) Molecular cloning, expression, and characterization of adenylate isopentenyltransferase from hop (Humulus lupulus L.). Phytochemistry 65: 2439-2446
Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Current Opinion in Plant Biology 9: 484-489
Soderberg T, Poulter CD (2001) Escherichia coli dimethylallyl diphosphate: tRNA dimethylallyltransferase: site-directed mutagenesis of highly conserved residues. Biochemistry 40: 1734-1740
Song J, Jiang L, Jameson PE (2012) Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biology 12: 78
Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. Journal of Biological Chemistry 276: 26405-26410
Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The Plant Journal 45: 1028-1036
Vyroubalova S, Vaclavikova K, Tureckova V, Novak O, Smehilova M, Hluska T, Ohnoutkova L, Frebort I, Galuszka P (2009) Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiology 151: 433-447
Wang CN, Chen YJ, Chang, YC, Wu CH (2008) A step-by-step optimization guide for applying tissue specific RNA in-situ hybridization to non-model plant species. Taiwania 53: 383-393
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191
Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell 15: 2532-2550
Whelan JA, Russell NB, Whelan MA (2003) A method for the absolute quantification of cDNA using real-time PCR. Journal of Immunological Methods 278: 261-219
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology 15:1566-71
Ye CJ, Wu SW, Kong FN, Zhou CJ, Yang QK, Sun Y, Wang B (2006) Identification and characterization of an isopentenyltransferase (IPT) gene in soybean (Glycine max L.). Plant Science 14: 542–550
Yeh CS, Hsieh LS, Yang CC, Le PD (2011) Molecular characterization of isopentenyltransferase (BoAIPT1) from Bambusa oldhamii expressed in Escherichia coli. Botanical study 52:249-256
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56101-
dc.description.abstract苦苣苔科的堇蘭(Streptocarpus rexii)不具有頂端分生組織,其細胞分裂活力位於葉子上,使葉子取代頂端分生組織的功能而具有生長新器官與維持植株發育的能力。過去研究顯示堇蘭這種異位的分生組織會受到外加細胞分裂素(cytokinin)的促進,而這和模式植物中細胞分裂素負責分生組織活力的維持,具有相似的性質。故我們嘗試解開細胞分裂素是如何參與堇蘭異位分生組織活力的調控。本研究自堇蘭分離出細胞分裂素生合成異戊烯基轉移酶基因(ISOPENTENYLTRANSFERASE, IPT) ,並檢測其在堇蘭幼苗的分生組織中的表現模式及是否受到外加植物荷爾蒙的調控。我們自堇蘭分離出五個IPT同源基因(SrIPT1, SrIPT2, SrIPT3, SrIPT5, SrIPT9),其中SrIPT1與SrIPT3集中表現在花或根部,SrIPT5和SrIPT9則在各個器官都有表現,而SrIPT2具有提前終止密碼子,可能是一個假基因(pseudogene)。我們更進一步發現SrIPT1, SrIPT5與SrIPT9均大量表現在堇蘭的異位分生組織內(groove meristem和basal meristem),而SrIPT5在分生組織處(葉子基部)的表現量比不具有分生組織活力分佈的葉尖端的表現量還高。這些結果支持異位分生組織的活力維持需要高濃度細胞分裂素的假設。最後,我們發現外加的荷爾蒙如生長素與吉貝素會抑制SrIPT3, SrIPT5, SrIPT9表現,而細胞分裂素會促進SrIPT1, SrIPT3與SrIPT9表現,暗示植物荷爾蒙調節SrIPT的表現量可能與堇蘭異位分生組織的維持有關。我們的研究證實IPT基因在堇蘭的分生組織內的表現,顯示其可能參與維持分生組織的活力。這也進一步暗示細胞分裂素生合成可能和堇蘭的分生組織自莖頂異位至葉子後的活力維持有關。zh_TW
dc.description.abstractStreptocarpus rexii (Gesneriaceae) lacks the conventional shoot apical meristem (SAM). On the other hand, unorthodox meristems form on the leaves of S. rexii, and are capable of producing lateral organs and maintaining plant’s growth. Previous researches indicated that the exogenous cytokinin (CK) treatment affected the activities of the unorthodox meristems of S. rexii. We therefore aimed to understand how CK is involved in maintaining the unorthodox meristem activity of S. rexii. In this study, I isolated the CK biosynthesis IPT gene (ISOPENTENYLTRANSFERASE) and examined their expression patterns in relation to meristem activity in the seedling of S. rexii. I also tested whether the expression levels of SrIPT genes can be altered by exogenous hormone treatments in order to understand whether SrIPTs can be regulated by major phytohormones. Five IPT homologous genes were isolated from S. rexii (SrIPTs): SrIPT1, SrIPT2, SrIPT3, SrIPT5, and SrIPT9, while SrIPT2 is perhaps a pseudogene because of the formation of a premature stop codon. Real-time PCR of the other four SrIPTs revealed that SrIPT1 mainly expressed in floral organs and SrIPT3 mainly in roots, and SrIPT5 and SrIPT9 expressed in all organs examined. Furthermore, I found the strong expression signals of SrIPT1, SrIPT5 and SrIPT9 within the unorthodox meristems (basal and groove meristems) via RNA in situ hybridization. I also discovered that SrIPT5 strongly expressed in meristem-located (proximal end) rather than no-meristem-located (distal end) lamina tissue of older leaves. These results supported the hypothesis that meristem-localized CK level is required for the maintenance of these unorthodox meristems. Exogenous hormone treatments such as auxin and gibberellin can inhibit certain SrIPTs expression but CK increase their expression instead, implying that hormone regulated SrIPTs expression may be important for meristem maintenance. Overall, our results indicated that certain CK biosynthesis IPT genes expressed in unorthodox meristems, suggesting they have a role on meristem maintenance.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:15:29Z (GMT). No. of bitstreams: 1
ntu-103-R01b44006-1.pdf: 4486535 bytes, checksum: 5acfd3c914933a60f15323ce2ad0610b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要……………………………………………………………………………… I
Abstract.…………………………………………………………………………….… II
Content………………………………………………………………………………III
Index of figures and table……………………………………………………………V
Abbreviation…………………………………………………………………………VI
Overall goal……………………………………………………………………………1
Introduction…………………………………………………………………………….2
The uniqueness of Streptocarpus rexii……………………………………………….2
Cytokinin promotes meristem activity in Streptocarpus species…………………5
Similarities in regulating meristem activity shared by model plants and S. rexii…..8
The CK biosynthesis gene ISOPENTENYLTRANSFERASE (IPT) ………………10
Aims of this study…………………………………………………………………14
Materials and Methods…………………………………………………………16
Plant material………………………………………………………………16
Nucliec acid extraction, regular PCR and cloning protocol…………………16
Isolation of SrIPT genes…………………………………………………………20
3’RACE………………………………………………………………20
Inverse PCR (iPCR) ……………………………………………………23
TAIL PCR………………………………………………………………26
Isolation of SrIPT2 and SrIPT9 intron sequence………………………29
Homology assessment of SrIPTs…………………………………………………29
Sequence identity and similarity comparison…………………………29
Reconstruction of phylogenetic tree of IPT genes……………………30
Reverse transcription PCR and real-time PCR………………………………31
RT-PCR with plasmid control for relative expression analysis………31
Extraction of organs and phyllomorph RNA for expression analysis…37
Plant hormone treatment………………………………………………38
Gene expression analysis via real-time PCR…………………………39
RNA in situ hybridization……………………………………………………41
Preparation of plant tissue sample……………………………………41
Preparation of DIG-labeled RNA probe………………………………44
In situ hybridization……………………………………………………47
Results……………………………………………………………………………55
Isolation of IPT homologs in S. rexii……………………………………………55
Homology assessment of SrIPTs…………………………………………………55
Sequence identity and similarity………………………………………55
Reconstruction of phylogenetic tree of IPT genes……………………57
Verification of conserved domain shared by SrIPTs and model species IPT……58
The spatial expression analysis of SrIPTs…………………………………………62
Comparison of expression level among SrIPTs in seedlings…………62
Expression patterns of SrIPTs in different organs……………………63
SrIPTs expression level between proximal and distal phyllomorph…67
In situ expression patterns of SrIPTs in basal and groove meristem…70
Effect of hormone treatments on SrIPTs expression level……………75
Discussion…………………………………………………………………………77
SrIPTs are homologs to other model species IPT…………………………………77
SrIPT2 is likely to be a pseudogene………………………………………………77
Expression of SrIPTs associated with basal and groove meristem of S. rexii……78
SrIPTs expression overlapped with reported KNOX and GA related genes………81
Differentiated expression patterns of SrIPTs share similarities with related IPTs...82
SrIPTs may contribute to purposes other than meristem maintenance……………86
Phytohormones may involve in regulation of CK biosynthesis in S. rexii………87
Conclusion and Future Prospects………………………………………………90
Appendices………………………………………………………………………92
The biosynthesis pathway of cytokinin……………………………………………92
Summary of expression patterns of IPT homologs………………………………93
Summary of hormonal response of model plants IPTs……………………………96
cDNA sequences isolated in this study……………………………………………97
Primers used in this study………………………………………………………101
Calculating gene expression level using plasmid control………………………102
RNA in situ hybridization probe region…………………………………………103
Identity and similarity analysis of SrIPTs and AtIPTs…………………………105
Alignment of IPT homologs used in phylogenetic analysis……………………106
Premature stop codon in SrIPT2 and SlIPT5……………………………………107
References………………………………………………………………………108
dc.language.isoen
dc.subject苦苣苔科zh_TW
dc.subject堇蘭zh_TW
dc.subject細胞分裂素zh_TW
dc.subject細胞分裂素生合成zh_TW
dc.subject異位分生組織zh_TW
dc.subject異戊烯基轉移?zh_TW
dc.subject分生組織活力zh_TW
dc.subjectcytokininen
dc.subjectmeristem activityen
dc.subjectGesneriaceaeen
dc.subjectStreptocarpus rexiien
dc.subjectisopentenyltransferaseen
dc.subjectunorthodox meristemen
dc.subjectcytokinin biosynthesisen
dc.title細胞分裂素生合成基因對子葉不等大堇蘭分生組織異位的維持角色zh_TW
dc.titleThe role of cytokinin biosynthesis ISOPENTENYLTRANSFERASE gene in ectopic meristem maintenance of an unorthodox anisocotylous plants, Streptocarpus rexii (Gesneriaceae)en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳虹樺(Hong-Hwa Chen),蔡育彰(Yu-Chang Tsai),陳仁治(Jen-Chih Chen)
dc.subject.keyword苦苣苔科,堇蘭,細胞分裂素,細胞分裂素生合成,異位分生組織,異戊烯基轉移?,分生組織活力,zh_TW
dc.subject.keywordGesneriaceae,Streptocarpus rexii,cytokinin,cytokinin biosynthesis,unorthodox meristem,isopentenyltransferase,meristem activity,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2014-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved