請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56092
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐年盛(Nien-Sheng Hsu) | |
dc.contributor.author | Ching-Wen Chen | en |
dc.contributor.author | 陳敬文 | zh_TW |
dc.date.accessioned | 2021-06-16T05:15:13Z | - |
dc.date.available | 2015-08-21 | |
dc.date.copyright | 2014-08-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-18 | |
dc.identifier.citation | Aquaveo Inc., 2009. GMS Tutorials
http://www.aquaveo.com/gms-65tutorials Bhattacharjya, R.K. and Datta, B., 2005. Optimal management of coastal aquifers using linked simulation optimization approach. Water Resources Management, 19(3): 295-320. Chen, C.W., Wei, C.C., Liu, H.J. and Hsu, N.S., 2014. Application of neural networks and optimization model in conjunctive use of surface water and groundwater. Water Resources Management. Online First (DOI) 10.1007/s11269-014-0639-6. Chow, V.T., 1959. Open-channel hydraulics, McGraw-Hill, New York, 262-267. Chu, H.J. and Chang, L.C., 2009. Optimal control algorithms and neural network for dynamic groundwater management. Hydrological Processes, 23: 2765-2773. Coppola, E.A., Szidaroszky, F., Poulton, M. and Charles, E., 2003. Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping and climate conditions. Journal of Hydrologic Engineering, 8(6): 348-360. Coppola, E.A., Szidarovszky, F., Davis, D., Spayd, S., Poulton, M.M. and Roman, E., 2007. Multiobjective analysis of a public wellfield using artificial neural networks. Ground Water, 45(1): 53-61. Dhar, A. and Datta, B., 2009. Saltwater intrusion management of coastal aquifers. I: linked simulation-optimization. Journal of Hydrologic Engineering, 14(12): 1263-1272. Ejaz, M.S. and Peralta, R.C., 1995. Maximizing conjunctive use of surface and ground water under surface water quality constraints. Advances in Water Resources, 18(2): 67-75. Emch, G. and Yeh, W.W-G., 1998. Management model for conjunctive use of coastal surface water and groundwater. Journal of Water Resources Planning and Management. 124(3): 129-139. Gorelick, S.M., 1983. A review of distributed parameter groundwater management modeling methods. Water Resources Research, 19(2): 305-319. Hsu, N.S., Chiang, C.J., Wang, C.H., Liu, C.W., Huang, C.L. and Liu, H.J., 2013. Estimation of pumpage and recharge in alluvial fan topography considering multiple irrigation practices. Journal of Hydrology, 479: 35-50. Ioannis, N., Daliakopoulos, P.C. and Ioannis, K., 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309: 229-240. Johnson, A.I., 1967. Specific yield - compilation of specific yields for various materials. U.S. Geological Survey Water Supply Paper, 1662-D: 74. Karamouz, M., Kerchian, R. and Zahrie, B., 2004. Monthly water resources and irrigation planning: Case study of conjunctive use of surface and groundwater resources. Journal of Irrigation and Drainage Engineering, 130(5): 391-402. Karamouz, M., Tabari, M.M.R. and Kerachian, R., 2007. Application of genetic algorithms and artificial neural networks in conjunctive use of surface and groundwater resources. Water International, 32(1): 163-176. Kourakos, G. and Mantoglou, A., 2009. Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models. Advances in Water Resources, 32(4): 507–521. Louie, P.W.F., Yeh W.W-G. and Hsu, N.S., 1984. Multiobjective water resources management planning. Journal of Water Resources Planning and Management, 110(1): 39-56. McDonald, M. G. and Harbaugh, A. W., 1988. A modular three-dimensional finite-difference ground-water flow model. U.S. Geological Survey, Virginia. McPhee, J. and Yeh, W.W-G., 2004. Multiobjective optimization for sustainable groundwater management in semiarid regions. Journal of Water Resources Planning and Management, 130(6): 490-497. Nikolos, I.K., Stergiadi, M., Papadopoulou, M.P. and Karatzas, G.P., 2008. Artificial neural networks as an alternative approach to groundwater numerical modeling and environmental design. Hydrological Processes, 22: 3337-3348. Peralta, R.C., Azammia, H. and Takahashi, S., 1991a. Embedding and response matrix techniques for maximizing steady-state ground-water extraction: Computational comparison. Ground Water, 29(3): 357-364. Peralta, R.C., Asghari, K. and Shulstad, R.N., 1991b. SECTAR: Model for economically optimal sustained groundwater yield planning. Journal of Irrigation and Drainage Engineering, 117: 5-24. Pulido-Velazquez, D., Ahlfeld, D., Andreu, J. and Sahuquillo, A., 2008. Reducing the computational cost of unconfined groundwater flow in conjunctive-use models at basin scale assuming linear behaviour: The case of Adra-Campo de Dalias. Journal of Hydrology, 353(1-2): 159-174. Rao, S.V.N., Bhallamudi, S.M., Thandaveswara, B.S. and Mishra, G.C., 2004. Conjunctive use of surface and groundwater for coastal and deltaic systems. Journal of Water Resources Planning and Management, 130(3): 255-267. Safavi, H.R., Darzi, F. and Marino, M.A., 2009. Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resources Management, 24: 1965-1988. Singh, R. and Datta, B., 2006. Identification of groundwater pollution sources using GA-based linked simulation optimization model. Journal of Hydrologic Engineering, 11(2): 101-109. The ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000. Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering, 5(2): 124-137. Willis, R. and Finney, B., 1988. Planning model for optimal control of saltwater intrusion. Journal of Water Resources Planning and Management, 114(2): 163-178. Willis, R. and Liu, P., 1984. Optimization model for ground‐water planning. Journal of Water Resources Planning and Management, 110(3): 333-347. Willis, R. and Yeh, W.W-G., 1987. Groundwater systems planning and management, 1st edn. Prentice Hall Inc., New York. Xu, Z.X. and Li, J.Y., 2002. Short-term inflow forecasting using an artificial neural network model. Hydrological Processes, 16(12): 2423-2439., 經濟部,濁水溪中游地區地下水補注調查與評估八十五年度工作計畫期末報告,第 2-22頁,1996。 張興亞,灌溉水滲透之數值模擬,中原大學土木工程學系碩士論文,2001。 翁士民,雲林縣地下水流況受高鐵開發之影響研究,國立雲林科技大學環境與安全工程系碩士論文,2004。 農委會水土保持局,濁水溪流域整體治理規劃報告,2005。 徐年盛、江崇榮、汪中和、劉振宇、劉宏仁、黃建霖,地下水系統水平衡分析與補注源水量推估之研究,中國土木水利工程學刊,第23卷,第4期,pp.347-357,2011。 經濟部中央地質調查所,臺灣中段山區地下水資源調查與評估,成大研究發展基金會,2012。 經濟部水利署,經濟部水利署水文水資源資料管理供應系統網站, 2012。 http://gweb.wra.gov.tw/wrweb/ 王韋勳,名竹盆地地下水流數值模式之建立與應用,國立臺灣大學土木工程學系碩士論文,2012。 陳敬文、蔡旻彰、魏志強、徐年盛,地下水系統抽水操作規則最佳化之研究,台灣水利,第60卷,第3期,pp.60-71,2012。 經濟部水利署,雲林地區公共用水井群最佳化操作方式之研究,國立臺灣大學水工試驗所,2013。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56092 | - |
dc.description.abstract | 本研究發展一盆地抽水井群最佳操作優選模式,為因應盆地之水文地質條件,以逐年計算之豐水期地下水位作為限制探討盆地之最大可抽水量,研究流程共分三個步驟:(1)地下水流模擬模式之建立;(2)類神經網路模擬觀測站地下水位模式之建立;(3)抽水井群最佳操作優選模式之建立。本研究首先根據研究區域之水文地質特性,採用MODFLOW地下水流模擬模式以模擬研究區域之地下水流,待率定地下水流模擬模式後,再以亂數產生抽水量以訓練三種不同之類神經網路,並採用井群分組與開關之二向變數以模擬井群實際之管理操作,本研究共發展二套優選模式,分別為井群抽水最大化優選模式及月穩定需水量最大化優選模式,其中前者之目標函數為井群抽水量最大化,限制式則為抽水能力限制、抽水井群開關限制、豐水期地下水位限制與類神經網路模擬地下水位模式之限制,因為本優選問題屬於混合整數非線性規劃(MINLP),且含有大量之限制式,無法採用啟發式演算法協助求解,故採用Lingo套裝軟體求取最佳解。
本研究將所發展之抽水井群最佳操作優選模式應用於濁水溪中游之名竹盆地,測試不同架構之類神經網路與隱藏神經元個數後,可得前饋式類神經網路及10個隱藏層神經元最可代表研究區域內各觀測站之地下水位變化,優選模式以Lingo套裝軟體求解而得井群操作之最佳解,其結果顯示隨著名竹盆地抽水井群之分組從1組增加至4組,抽水量亦會增加達8成;此外豐水期之水位回復比例越高,則井群之可抽水量越低,月穩定需水量最大化優選模式之最佳抽水量稍小於井群抽水最大化優選模式之最佳抽水量,為驗證優選模式之地下水位變動是否合理,本研究將最佳解之井群抽水量代入MODFLOW地下水模擬模式,驗證結果顯示MODFLOW所模擬之豐水期地下水位皆符合限制式之水位,因此本優選模式所求得之井群操作結果近似於全域最佳解。 | zh_TW |
dc.description.abstract | The study is to develop an optimization model for the pumping well group, which can be used to determine the maximum pumping rate under the limitation of groundwater level. The flow chart of this study can be divided into three procedures, which are (1) the development of groundwater simulation model for the study area; (2) the training of the artificial neural networks model and (3) the development of optimization model for the optimal operation of pumping well groups. The study first investigates the hydrological and geophysical characteristics of the study area. After the calibration of the groundwater simulation model is completed, three different artificial neural networks, feed forward neural network, radial basis neural network and linear layer neural network, are trained by random pumping rates generated by MODFLOW to determine which ANN is the most suitable to simulate the groundwater level of the observation station in the study area. The optimization model of the optimal operation for the pumping well group is developed. The objective function is to maximize the pumping rates of the well groups under the constraints of the maximum pumping rate of each well, the simulation of groundwater level at the observation well by ANN model, the limit of groundwater level during wet period and the on-off switch of each well group. Because the optimization problem developed by the study belongs to mixed integer nonlinear programming (MINLP), which contains large quantities of constraints, Lingo software is applied to obtain the optimal solution of the optimization problem.
The methodology developed by this study is applied to Ming-Chu Basin. After training process and validation, the feed forward artificial neural network is the most suitable tool to represent the groundwater fluctuation of the observation well in the study area. The optimization model developed for Ming-Chu Basin is solved by Lingo software. The results show with increasing the division of well groups from 1 to 4 groups, the optimal pumping rates will be increased by nearly 80%. However, with increasing the recovery rate of groundwater level during wet period, the optimal pumping rate will be decreased accordingly. The optimal pumping rate is simulated by MODFLOW to validate the requirement of groundwater level during wet periods is fulfilled. The results show that the groundwater level of the optimal pumping rate simulated by MODFLOW is above or near the required groundwater level specified by the constraints. Therefore, the optimal pumping rate can be considered as the global optimal approximate solution of the optimization model. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:15:13Z (GMT). No. of bitstreams: 1 ntu-103-F94521324-1.pdf: 7066224 bytes, checksum: a222a019ea32895555569b842019507b (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………….i
誌謝………………………………………………………………………………….ii 摘要…………………………………………………..……………………………….iii Abstract…………………………………………..…………………………………...iv 目錄…………………………………………………………………………………vi 圖目錄…………………………………………….………………………………viii 表目錄…………………………………………..…………………………………..…x 一、 前言…………..…………………………….…………………………………1 1.1 研究動機…………..……….………..…………………...…………………1 1.2 研究目的…………..………….……………………...…………………2 1.3 研究方法及步驟……………………..………..………...…………………3 二、 文獻回顧…………..………………………..………….....…………………4 2.1 地下水資源管理方面…………..…….……...…………………………4 2.2 類神經網路運用在地下水問題方面…...……….…………………..…6 三、 優選模式建立…………..………...………………….……………………9 3.1 MODFLOW地下水流模擬模式建立..............……………………………9 3.2 類神經網路模式模擬觀測站地下水位模式之建立…..…………………14 3.3 抽水井群最佳操作優選模式建立..………...……….……………………17 3.4 抽水井群最佳操作優選模式求解..………...……….……………………22 四、 優選模式應用-以名竹盆地為例………………......…………………26 4.1 研究區域概述………..…………………………..…….....……………26 4.2 名竹盆地水平衡計算結果……………………..……….....……………33 4.3 名竹盆地地下水流數值模式建立………………..…….....……………41 4.4 名竹盆地類神經網路模式建立…..…………….……….....……………54 4.5 名竹盆地抽水井群最佳操作優選模式………...…………...……………57 4.6 優選模式應用結果分析…………………………...………...……………58 五、 結論與建議………..………...……………………….………………………76 5.1 結論………..……………………………….…...…………………………76 5.2 建議………..…………………………………...…………………………78 參考文獻………..………………………………………...…………………………80 附錄1 名竹盆地區域地質岩性與構造………………..……………..…………..附-1 附錄2 名竹盆地SFR模組設定…………...……………...………………………附-6 附錄3 FORTRAN軟體程式碼…………….………….…………………………附-11 附錄4 Lingo優選軟體程式碼………..…...……………………..………………附-23 簡歷………………………….…………..………………………..………………..簡-1 | |
dc.language.iso | zh-TW | |
dc.title | 抽水井群最佳操作優選模式之建立與應用 | zh_TW |
dc.title | Development and Application of Optimization Model for the Optimal Operation of Pumping Well Group | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉振宇(Chen-Wuing Liu),張良正(Liang-Cheng Chang),李振誥(Cheng-Haw Lee),徐國錦(Kuo-Chin Hsu),葉文工(William W-G. Yeh) | |
dc.subject.keyword | 井群,優選模式,類神經網路,MODFLOW,Lingo,混合整數非線性規劃, | zh_TW |
dc.subject.keyword | Pumping well group,Optimization model,Artificial neural networks,MODFLOW,Lingo,MINLP, | en |
dc.relation.page | 145 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 6.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。