請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56076完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余佳慧 | |
| dc.contributor.author | Luo-Ting Hsu | en |
| dc.contributor.author | 徐洛婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:14:45Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | 參考文獻
1. Eric P. Widmaier HR, Kevin T. Strang, Arthur J. Vander. Vander's Human Physiology: The Mechanisms of Body Function, 2011. 2. Lange W. Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 1975;157:115-24. 3. Gershon MD. The enteric nervous system: a second brain. Hosp Pract (1995) 1999;34:31-2, 35-8, 41-2 passim. 4. Bienenstock J, Collins S. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: psycho-neuroimmunology and the intestinal microbiota: clinical observations and basic mechanisms. Clin Exp Immunol 2010;160:85-91. 5. Fichna J, Storr MA. Brain-Gut Interactions in IBS. Front Pharmacol 2012;3:127. 6. Knowles CH, Aziz Q. Basic and clinical aspects of gastrointestinal pain. Pain 2009;141:191-209. 7. Mayer EA, Tillisch K. The brain-gut axis in abdominal pain syndromes. Annu Rev Med 2011;62:381-96. 8. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13:701-12. 9. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009;6:306-14. 10. Grundy D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut 2002;51 Suppl 1:i2-5. 11. Garcia-Larrea L. The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin 2012;42:299-313. 12. Penman J, Smith MC. Degeneration of the primary and secondary sensory neurones after trigeminal injection. J Neurol Neurosurg Psychiatry 1950;13:36-46. 13. Blackshaw LA, Brierley SM, Hughes PA. TRP channels: new targets for visceral pain. Gut 2010;59:126-35. 14. M.D. LH. The Human Brain and Spinal Cord: Springer US, 1983. 15. Sikandar S, Dickenson AH. Pregabalin modulation of spinal and brainstem visceral nociceptive processing. Pain 2011;152:2312-22. 16. Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and molecular mechanisms of pain. Cell 2009;139:267-84. 17. Millan MJ. Descending control of pain. Prog Neurobiol 2002;66:355-474. 18. Heinricher MM, Tavares I, Leith JL, et al. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev 2009;60:214-25. 19. Sengupta JN. Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol 2009:31-74. 20. Ibeakanma C, Ochoa-Cortes F, Miranda-Morales M, et al. Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology 2011;141:2098-2108 e5. 21. Antonopoulos DA, Huse SM, Morrison HG, et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 2009;77:2367-75. 22. Hawrelak JA, Myers SP. The causes of intestinal dysbiosis: a review. Altern Med Rev 2004;9:180-97. 23. Lu CL, Chen CY, Lang HC, et al. Current patterns of irritable bowel syndrome in Taiwan: the Rome II questionnaire on a Chinese population. Aliment Pharmacol Ther 2003;18:1159-69. 24. Quigley EM, Abdel-Hamid H, Barbara G, et al. A global perspective on irritable bowel syndrome: a consensus statement of the World Gastroenterology Organisation Summit Task Force on irritable bowel syndrome. J Clin Gastroenterol 2012;46:356-66. 25. Wong RK, Drossman DA. Quality of life measures in irritable bowel syndrome. Expert Rev Gastroenterol Hepatol 2010;4:277-84. 26. Dorn SD, Morris CB, Hu Y, et al. Irritable bowel syndrome subtypes defined by Rome II and Rome III criteria are similar. J Clin Gastroenterol 2009;43:214-20. 27. Chen J, Zhang Y, Deng Z. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Th1/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterol 2012;12:91. 28. Mertz H, Naliboff B, Munakata J, et al. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology 1995;109:40-52. 29. Kellow JE, Phillips SF. Altered small bowel motility in irritable bowel syndrome is correlated with symptoms. Gastroenterology 1987;92:1885-93. 30. Kellow JE, Phillips SF, Miller LJ, et al. Dysmotility of the small intestine in irritable bowel syndrome. Gut 1988;29:1236-43. 31. Ohman L, Simren M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol 2010;7:163-73. 32. Drossman DA, Camilleri M, Mayer EA, et al. AGA technical review on irritable bowel syndrome. Gastroenterology 2002;123:2108-31. 33. Drossman DA, Sandler RS, McKee DC, et al. Bowel patterns among subjects not seeking health care. Use of a questionnaire to identify a population with bowel dysfunction. Gastroenterology 1982;83:529-34. 34. Fava GA, Pavan L. Large bowel disorders. I. Illness configuration and life events. Psychother Psychosom 1976;27:93-9. 35. Soderholm JD, Perdue MH. Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 2001;280:G7-G13. 36. Bradesi S, Schwetz I, Ennes HS, et al. Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 2005;289:G42-53. 37. Larauche M, Bradesi S, Million M, et al. Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. Am J Physiol Gastrointest Liver Physiol 2008;294:G1033-40. 38. Cameron HL, Perdue MH. Stress impairs murine intestinal barrier function: improvement by glucagon-like peptide-2. J Pharmacol Exp Ther 2005;314:214-20. 39. Moloney RD, O'Leary OF, Felice D, et al. Early-life stress induces visceral hypersensitivity in mice. Neurosci Lett 2012;512:99-102. 40. Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology 2009;136:1979-88. 41. Neal KR, Hebden J, Spiller R. Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ 1997;314:779-82. 42. Mearin F, Perez-Oliveras M, Perello A, et al. Dyspepsia and irritable bowel syndrome after a Salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology 2005;129:98-104. 43. Moss-Morris R, Spence M. To 'lump' or to 'split' the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosom Med 2006;68:463-9. 44. Wang LH, Fang XC, Pan GZ. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut 2004;53:1096-101. 45. Barbara G, Cremon C, Pallotti F, et al. Postinfectious irritable bowel syndrome. J Pediatr Gastroenterol Nutr 2009;48 Suppl 2:S95-7. 46. Faubert G. Immune response to Giardia duodenalis. Clin Microbiol Rev 2000;13:35-54, table of contents. 47. Lai CC, Wu FT, Ji DD, et al. Gastroenteritis in a Taipei emergency department: aetiology and risk factors. Clin Microbiol Infect 2011;17:1071-7. 48. Nash TE. Antigenic variation in Giardia lamblia and the host's immune response. Philos Trans R Soc Lond B Biol Sci 1997;352:1369-75. 49. Eckmann L. Mucosal defences against Giardia. Parasite Immunol 2003;25:259-70. 50. Langford TD, Housley MP, Boes M, et al. Central importance of immunoglobulin A in host defense against Giardia spp. Infect Immun 2002;70:11-8. 51. Li E, Zhou P, Petrin Z, et al. Mast cell-dependent control of Giardia lamblia infections in mice. Infect Immun 2004;72:6642-9. 52. D'Anchino M, Orlando D, De Feudis L. Giardia lamblia infections become clinically evident by eliciting symptoms of irritable bowel syndrome. J Infect 2002;45:169-72. 53. Hanevik K, Hausken T, Morken MH, et al. Persisting symptoms and duodenal inflammation related to Giardia duodenalis infection. J Infect 2007;55:524-30. 54. Nygard K, Schimmer B, Sobstad O, et al. A large community outbreak of waterborne giardiasis-delayed detection in a non-endemic urban area. BMC Public Health 2006;6:141. 55. Posserud I, Stotzer PO, Bjornsson ES, et al. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut 2007;56:802-8. 56. Qin HY, Wu JC, Tong XD, et al. Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol 2011;46:164-74. 57. Bercik P, Wang L, Verdu EF, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 2004;127:179-87. 58. Akiho H, Deng Y, Blennerhassett P, et al. Mechanisms underlying the maintenance of muscle hypercontractility in a model of postinfective gut dysfunction. Gastroenterology 2005;129:131-41. 59. Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology 2002;122:2032-48. 60. Roth KA, Kim S, Gordon JI. Immunocytochemical studies suggest two pathways for enteroendocrine cell differentiation in the colon. Am J Physiol 1992;263:G174-80. 61. Manocha M, Shajib MS, Rahman MM, et al. IL-13-mediated immunological control of enterochromaffin cell hyperplasia and serotonin production in the gut. Mucosal Immunol 2013;6:146-55. 62. Nakatani Y, Sato-Suzuki I, Tsujino N, et al. Augmented brain 5-HT crosses the blood-brain barrier through the 5-HT transporter in rat. Eur J Neurosci 2008;27:2466-72. 63. Sharma HS, Dey PK. Impairment of blood-brain barrier (BBB) in rat by immobilization stress: role of serotonin (5-HT). Indian J Physiol Pharmacol 1981;25:111-22. 64. Sharma HS, Dey PK. Probable involvement of 5-hydroxytryptamine in increased permeability of blood-brain barrier under heat stress in young rats. Neuropharmacology 1986;25:161-7. 65. Sikander A, Rana SV, Prasad KK. Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin Chim Acta 2009;403:47-55. 66. Dunlop SP, Coleman NS, Blackshaw E, et al. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin Gastroenterol Hepatol 2005;3:349-57. 67. Buhner S, Li Q, Vignali S, et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 2009;137:1425-34. 68. Lu CL, Hsieh JC, Dun NJ, et al. Estrogen rapidly modulates 5-hydroxytrytophan-induced visceral hypersensitivity via GPR30 in rats. Gastroenterology 2009;137:1040-50. 69. Crowell MD. Role of serotonin in the pathophysiology of the irritable bowel syndrome. Br J Pharmacol 2004;141:1285-93. 70. O'Mahony SM, Bulmer DC, Coelho AM, et al. 5-HT(2B) receptors modulate visceral hypersensitivity in a stress-sensitive animal model of brain-gut axis dysfunction. Neurogastroenterol Motil 2010;22:573-8, e124. 71. Ohashi-Doi K, Himaki D, Nagao K, et al. A selective, high affinity 5-HT 2B receptor antagonist inhibits visceral hypersensitivity in rats. Neurogastroenterol Motil 2010;22:e69-76. 72. Tonini M. 5-Hydroxytryptamine effects in the gut: the 3, 4, and 7 receptors. Neurogastroenterol Motil 2005;17:637-42. 73. Gershon MD. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol 2005;39:S184-93. 74. Moskwa A, Boznanska P. [Role of serotonin in the pathophysiology of the irritable bowel syndrome]. Wiad Lek 2007;60:371-6. 75. Muller-Lissner SA, Fumagalli I, Bardhan KD, et al. Tegaserod, a 5-HT(4) receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation. Aliment Pharmacol Ther 2001;15:1655-66. 76. Liddle RA. Cholecystokinin cells. Annu Rev Physiol 1997;59:221-42. 77. Dockray GJ. Cholecystokinin and gut-brain signalling. Regul Pept 2009;155:6-10. 78. Varga G, Balint A, Burghardt B, et al. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br J Pharmacol 2004;141:1275-84. 79. Blackshaw LA, Grundy D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J Auton Nerv Syst 1990;31:191-201. 80. Cano V, Merino B, Ezquerra L, et al. A cholecystokinin-1 receptor agonist (CCK-8) mediates increased permeability of brain barriers to leptin. Br J Pharmacol 2008;154:1009-15. 81. Zhu XG, Greeley GH, Jr., Lewis BG, et al. Blood-CSF barrier to CCK and effect of centrally administered bombesin on release of brain CCK. J Neurosci Res 1986;15:393-403. 82. Dizdar V, Spiller R, Singh G, et al. Relative importance of abnormalities of CCK and 5-HT (serotonin) in Giardia-induced post-infectious irritable bowel syndrome and functional dyspepsia. Aliment Pharmacol Ther 2010;31:883-91. 83. Cawston EE, Miller LJ. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol 2010;159:1009-21. 84. Rettenbacher M, Reubi JC. Localization and characterization of neuropeptide receptors in human colon. Naunyn Schmiedebergs Arch Pharmacol 2001;364:291-304. 85. Ko BS, Han JH, Jeong JI, et al. Mechanism of action of cholecystokinin on colonic motility in isolated, vascularly perfused rat colon. J Neurogastroenterol Motil 2011;17:73-81. 86. Schulz S, Rocken C, Mawrin C, et al. Immunohistochemical localization of CCK1 cholecystokinin receptors in normal and neoplastic human tissues. J Clin Endocrinol Metab 2005;90:6149-55. 87. Fornai M, Colucci R, Antonioli L, et al. CCK2 receptors mediate inhibitory effects of cholecystokinin on the motor activity of guinea-pig distal colon. Eur J Pharmacol 2007;557:212-20. 88. Noble F, Wank SA, Crawley JN, et al. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev 1999;51:745-81. 89. von Schrenck T, Moran TH, Heinz-Erian P, et al. Cholecystokinin receptors on gallbladder muscle and pancreatic acinar cells: a comparative study. Am J Physiol 1988;255:G512-21. 90. Steigerwalt RW, Goldfine ID, Williams JA. Characterization of cholecystokinin receptors on bovine gallbladder membranes. Am J Physiol 1984;247:G709-14. 91. Yu DH, Huang SC, Wank SA, et al. Pancreatic receptors for cholecystokinin: evidence for three receptor classes. Am J Physiol 1990;258:G86-95. 92. Moonka R, Zhou W, Bell RH, Jr. Cholecystokinin-A receptor messenger RNA expression in human pancreatic cancer. J Gastrointest Surg 1999;3:134-40. 93. Niederau C, Luthen R, Heintges T. Effects of CCK on pancreatic function and morphology. Ann N Y Acad Sci 1994;713:180-98. 94. Takiguchi S, Suzuki S, Sato Y, et al. Role of CCK-A receptor for pancreatic function in mice: a study in CCK-A receptor knockout mice. Pancreas 2002;24:276-83. 95. Fornai M, Colucci R, Antonioli L, et al. Cholecystokinin CCK2 receptors mediate the peptide's inhibitory actions on the contractile activity of human distal colon via the nitric oxide pathway. Br J Pharmacol 2007;151:1246-53. 96. Friedrich AE, Gebhart GF. Modulation of visceral hyperalgesia by morphine and cholecystokinin from the rat rostroventral medial medulla. Pain 2003;104:93-101. 97. Friedrich AE, Gebhart GF. Effects of spinal cholecystokinin receptor antagonists on morphine antinociception in a model of visceral pain in the rat. J Pharmacol Exp Ther 2000;292:538-44. 98. Cao B, Zhang X, Yan N, et al. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats. Mol Brain 2012;5:19. 99. Rivat C, Becker C, Blugeot A, et al. Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain 2010;150:358-68. 100. Heinricher MM, Neubert MJ. Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J Neurophysiol 2004;92:1982-9. 101. Xie JY, Herman DS, Stiller CO, et al. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci 2005;25:409-16. 102. Van Der Veek PP, Biemond I, Masclee AA. Proximal and distal gut hormone secretion in irritable bowel syndrome. Scand J Gastroenterol 2006;41:170-7. 103. Zhang H, Yan Y, Shi R, et al. Correlation of gut hormones with irritable bowel syndrome. Digestion 2008;78:72-6. 104. Chey WY, Jin HO, Lee MH, et al. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am J Gastroenterol 2001;96:1499-506. 105. Cremonini F, Camilleri M, McKinzie S, et al. Effect of CCK-1 antagonist, dexloxiglumide, in female patients with irritable bowel syndrome: a pharmacodynamic and pharmacogenomic study. Am J Gastroenterol 2005;100:652-63. 106. Simren M, Abrahamsson H, Bjornsson ES. An exaggerated sensory component of the gastrocolonic response in patients with irritable bowel syndrome. Gut 2001;48:20-7. 107. van der Schaar PJ, van Hoboken E, Ludidi S, et al. Effect of cholecystokinin on rectal motor and sensory function in patients with irritable bowel syndrome and healthy controls. Colorectal Dis 2013;15:e29-34. 108. Coffin B, Fossati S, Flourie B, et al. Regional effects of cholecystokinin octapeptide on colonic phasic and tonic motility in healthy humans. Am J Physiol 1999;276:G767-72. 109. Enck P, Kaiser C, Felber M, et al. Circadian variation of rectal sensitivity and gastrointestinal peptides in healthy volunteers. Neurogastroenterol Motil 2009;21:52-8. 110. Harvey RF, Read AE. Effect of cholecystokinin on colonic motility and symptoms in patients with the irritable-bowel syndrome. Lancet 1973;1:1-3. 111. Renny A, Snape WJ, Jr., Sun EA, et al. Role of cholecystokinin in the gastrocolonic response to a fat meal. Gastroenterology 1983;85:17-21. 112. Sagami Y, Shimada Y, Tayama J, et al. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut 2004;53:958-64. 113. Wallon C, Yang PC, Keita AV, et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 2008;57:50-8. 114. Santos J, Saunders PR, Hanssen NP, et al. Corticotropin-releasing hormone mimics stress-induced colonic epithelial pathophysiology in the rat. Am J Physiol 1999;277:G391-9. 115. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 2001;24:487-517. 116. Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389:816-24. 117. Hutter MM, Wick EC, Day AL, et al. Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R). Pancreas 2005;30:260-5. 118. Winston J, Shenoy M, Medley D, et al. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 2007;132:615-27. 119. Akbar A, Yiangou Y, Facer P, et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 2008;57:923-9. 120. Sugiuar T, Bielefeldt K, Gebhart GF. TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. J Neurosci 2004;24:9521-30. 121. Casu MA, Porcella A, Ruiu S, et al. Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract. Eur J Pharmacol 2003;459:97-105. 122. Ahluwalia J, Urban L, Capogna M, et al. Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 2000;100:685-8. 123. Adami M, Frati P, Bertini S, et al. Gastric antisecretory role and immunohistochemical localization of cannabinoid receptors in the rat stomach. Br J Pharmacol 2002;135:1598-606. 124. Izzo AA, Mascolo N, Capasso R, et al. Inhibitory effect of cannabinoid agonists on gastric emptying in the rat. Naunyn Schmiedebergs Arch Pharmacol 1999;360:221-3. 125. Pertwee RG, Fernando SR, Nash JE, et al. Further evidence for the presence of cannabinoid CB1 receptors in guinea-pig small intestine. Br J Pharmacol 1996;118:2199-205. 126. Ahluwalia J, Urban L, Bevan S, et al. Cannabinoid 1 receptors are expressed by nerve growth factor- and glial cell-derived neurotrophic factor-responsive primary sensory neurones. Neuroscience 2002;110:747-53. 127. Galdino G, Romero TR, Silva JF, et al. The endocannabinoid system mediates aerobic exercise-induced antinociception in rats. Neuropharmacology 2014;77:313-24. 128. Silva LC, Romero TR, Guzzo LS, et al. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs. Braz J Med Biol Res 2012;45:1240-3. 129. Sanson M, Bueno L, Fioramonti J. Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats. Neurogastroenterol Motil 2006;18:949-56. 130. Shen L, Yang XJ, Qian W, et al. The role of peripheral cannabinoid receptors type 1 in rats with visceral hypersensitivity induced by chronic restraint stress. J Neurogastroenterol Motil 2010;16:281-90. 131. Hong S, Zheng G, Wu X, et al. Corticosterone mediates reciprocal changes in CB 1 and TRPV1 receptors in primary sensory neurons in the chronically stressed rat. Gastroenterology 2011;140:627-637 e4. 132. Palecek J, Willis WD. The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain 2003;104:501-7. 133. Livezey GT, Miller JM, Vogel WH. Plasma norepinephrine, epinephrine and corticosterone stress responses to restraint in individual male and female rats, and their correlations. Neurosci Lett 1985;62:51-6. 134. Vogel WH, Jensh R. Chronic stress and plasma catecholamine and corticosterone levels in male rats. Neurosci Lett 1988;87:183-8. 135. Wynne-Edwards KE, Edwards HE, Hancock TM. The human fetus preferentially secretes corticosterone, rather than cortisol, in response to intra-partum stressors. PLoS One 2013;8:e63684. 136. Xu D, Gao J, Gillilland M, 3rd, et al. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology 2014;146:484-96 e4. 137. Coelho AM, Vergnolle N, Guiard B, et al. Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats. Gastroenterology 2002;122:1035-47. 138. Soderholm JD, Yang PC, Ceponis P, et al. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 2002;123:1099-108. 139. Leng YX, Wei YY, Zhou SP, et al. [Establishment of irritable bowel syndrome rat model by combination of intestinal infection with Trichinella spiralis and acute stress]. Zhonghua Yi Xue Za Zhi 2009;89:2992-6. 140. Yu YB, Zuo XL, Zhao QJ, et al. Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut 2012;61:685-94. 141. Barreau F, Salvador-Cartier C, Houdeau E, et al. Long-term alterations of colonic nerve-mast cell interactions induced by neonatal maternal deprivation in rats. Gut 2008;57:582-90. 142. Dhobale M. Neurotrophins: Role in adverse pregnancy outcome. Int J Dev Neurosci 2014;37C:8-14. 143. Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006;361:1545-64. 144. Leon A, Buriani A, Dal Toso R, et al. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A 1994;91:3739-43. 145. Boesmans W, Gomes P, Janssens J, et al. Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut 2008;57:314-22. 146. Kondyli M, Varakis J, Assimakopoulou M. Expression of p75NTR and Trk neurotrophin receptors in the enteric nervous system of human adults. Anat Sci Int 2005;80:223-8. 147. Lucini C, Maruccio L, Arcamone N, et al. Neurotrophin-like immunoreactivity in the gut of teleost species. Neurosci Lett 2003;345:33-6. 148. Johansson M, Norrgard O, Forsgren S. Study of expression patterns and levels of neurotrophins and neurotrophin receptors in ulcerative colitis. Inflamm Bowel Dis 2007;13:398-409. 149. Qiao LY, Gulick MA, Bowers J, et al. Differential changes in brain-derived neurotrophic factor and extracellular signal-regulated kinase in rat primary afferent pathways with colitis. Neurogastroenterol Motil 2008;20:928-38. 150. Skaper SD, Pollock M, Facci L. Mast cells differentially express and release active high molecular weight neurotrophins. Brain Res Mol Brain Res 2001;97:177-85. 151. Tirassa P, Costa N. CCK-8 induces NGF and BDNF synthesis and modulates TrkA and TrkB expression in the rat hippocampus and septum: Effects on kindling development. Neurochem Int 2007;50:130-8. 152. Hwang CK, Kim do K, Chun HS. Cholecystokinin-8 induces brain-derived neurotrophic factor expression in noradrenergic neuronal cells. Neuropeptides 2013;47:245-50. 153. Tirassa P, Stenfors C, Lundeberg T, et al. Cholecystokinin-8 regulation of NGF concentrations in adult mouse brain through a mechanism involving CCK(A) and CCK(B) receptors. Br J Pharmacol 1998;123:1230-6. 154. Adams JB, Pyke RE, Costa J, et al. A double-blind, placebo-controlled study of a CCK-B receptor antagonist, CI-988, in patients with generalized anxiety disorder. J Clin Psychopharmacol 1995;15:428-34. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56076 | - |
| dc.description.abstract | 背景 : 腸躁症是一種功能性的腸胃道失調,並且伴隨反覆性腹痛和排便習慣的改變,但卻無法確認病因的存在,而生活中的精神壓力或感染性腸胃炎後都可能誘發腸躁症,特稱作 『後感染性腸躁症』。約有40-80% 的受到梨形蟲感染病人,在排除寄生蟲後出現腹痛等腸躁症症狀。本研究的目的是利用梨形蟲感染加上壓力來建立腸躁症的小鼠模式,藉此評估其對內臟高敏感性和腸道功能的影響。
方法 : 小鼠灌食梨形蟲的滋養體或做為對照的磷酸緩衝液,並於感染後的35-44天即梨形蟲已排除體外時,給予每天一小時共十天的避水壓力(water avoidance stress, WAS)或無處理(nonhandled, NH)。有些動物組別於第44天給予腹腔注射膽囊收縮素受體拮抗劑(AIH、BIH)。藉由內臟動器對結直腸撐張(colorectal distension, CRD)來評估腹痛敏感程度,並透過 Protein Gene Product 9.5 (PGP 9.5)觀察神經纖維及測量Cholecystokinin(CCK)於腸道組織的變化。 結果 : 梨形蟲感染後排除或精神壓力之單一因子,均會導致結直腸撐張刺激下的痛覺異常與痛覺過度,且兩者合併之雙重因子對痛覺敏感化有協同效應。兩者合併之雙重因子會造成腸道黏膜神經纖維分布及CCK總量增加。而拮抗劑 AIH 、BIH 均能抑制內臟高敏感化。 結論 : 本實驗動物模式中,寄生蟲感染排除後合併精神壓力,會造成內臟高敏感化,伴隨腸道黏膜層神經纖維分布及 CCK 總量增加。此外, CCK 受體有參與內臟高敏感化的機制。 | zh_TW |
| dc.description.abstract | Backgrounds : Irritable bowel syndrome(IBS)is a functional gastrointestinal disorder characterized by recurrent abdominal pain associated with changes in bowel habits in absence of identifiable etiology. Onset of IBS is likely to occur after stressful events or infectious gastroenteritis termed post-infectious(PI)IBS. Up to 40-80% of the Giardia-infected patients showed abdominal symptoms consistent with IBS after eradication of parasites. The aim is to establish a PI-IBS model using post-giardiasis combined with stress to evaluate visceral hypersensitivity and gut dysfunctions.
Methods : Mice were inoculated with Giardia lamblia or pair-fed with saline on day 0, and then subjected to water avoidance stress(WAS)for 1 hr/day for 10 consecutive days or nonhandled on PI day 35-44 after clearance of parasites. In some experiments, inhibitors to cholecystokinin(CCK)receptors (AIH and BIH)were intraperitoneally administered to mice on PI day 44. Abdominal pain was evaluated by visceromoter response to colorectal distension(CRD). Intestinal tissues were immunostained with protein gene product(PGP) 9.5 for nerve fibers; cholecystokinin(CCK)levels were also measured. Results : Increased pain perception to CRD was observed in mice post-giardiasis or stress alone, and synergistic effects was seen in post-giardiasis combined with stress. Post-infection combined with stress also increased nerve fibers and CCK levels in intestinal tissues. Administration of AIH, BIH inhibited visceral hypersensitivity in mice. Conclusion : Post-infection combined with stress caused visceral hypersensitivity associated with nerve fiber outgrowth and increased CCK levels in intestinal tissues. The visceral hypersensitivity was dependent on CCK receptors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:14:45Z (GMT). No. of bitstreams: 1 ntu-103-R01441011-1.pdf: 2774930 bytes, checksum: 28a6514ebeb7efabaf1b1a27b18832c4 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract II 壹、 前言 1 1. 腸道結構和功能 1 2. 腦腸軸(brain-gut axis, BGA) 和腦腸菌軸(brain-gut-microbiota axis, BGMA) 1 3. 內臟痛覺傳遞(visceral pain pathway)和高敏感性 (visceral hypersensitivity) 2 3.1. 上行痛覺調控路徑 (ascending visceral pain pathway) 2 3.2. 下行痛覺調控路徑 (descending visceral pain pathway) 3 3.3. 內臟高敏感性(visceral hypersensitivity) 3 4. 腸躁症 (irritable bowel symdrom, IBS) 3 4.1. 流行病學研究 4 4.2. 臨床症狀及致病機制研究 4 4.3. 風險因子 5 4.3.1. 精神壓力 5 4.3.2. 腸胃道感染 6 4.3.2.1梨形蟲感染和PI─IBS 6 4.4. IBS動物模式 7 5. IBS 腹痛症狀的致病分子機轉 8 5.1 血清素(serotonin, 5-hydroxytryptamine, 5-HT) 8 5.2.膽囊收縮素─胰泌素 (Cholecystokinin-Pancreozymin, CCK-PZ)10 5.3腎上腺皮質軸與腎上腺皮質酮(hypothalamic- pituitary-adrenal axis, HPA axis and corticosterone) 12 5.4痛覺受器 : 辣椒素第一型受體 ( transient receptor potential vanilloid 1, TRPV 1) 與大麻素第一型受體(Cannabinoid receptor type 1, CB1) 13 6. 研究目的 14 貳、 材料與方法 15 1. 實驗動物 15 2. 實驗寄生蟲 15 3. 精神壓力模式 16 4. 拮抗劑 16 4.1 膽囊收縮素受體拮抗劑(CCK receptor antagonist) 16 5. 實驗動物分組與流程 17 第一部分 : 梨形蟲感染與避水壓力實驗 17 第二部分 : 拮抗劑試驗 18 6. 組織處理與實驗分析 18 6.1. 小鼠體重 (body weight) 分析 18 6.2. 小鼠血清中腎上腺皮質酮 (corticosterone)測定 18 6.3. 內臟動器反應(visceromotor response, VMR)分析 19 6.4. 背根神經節(dorsal root ganglion, DRG)的分離 20 6.5. 組織切片與染色 20 6.5.1.冷凍包埋檢體製備 20 6.5.2.免疫螢光染色 21 6.6.西方轉漬法 (western blotting) 21 6.6.1.腸道黏膜層或全組織蛋白質萃取 21 6.6.2.蛋白質定量 22 6.6.3.蛋白質電泳 22 6.6.4.蛋白質分析 23 6.7. 統計方法 24 參、 實驗結果 25 1. 梨形蟲感染後排除期合併避水壓力對小鼠血清中皮質固醇與體重之影響 25 1.1. 血清中腎上腺皮質酮濃度 25 1.2. 小鼠體重記錄 25 2. 梨形蟲感染後排除期合併避水壓力對腸道功能之影響 25 2.1. 內臟痛覺反應 25 2.2. 腸道組織神經之免疫螢光染色 26 3. 梨形蟲感染後排除期合併避水壓力對腸道組織與背根神經節中痛覺相關分子的表現 27 4. 膽囊收縮素受器拮抗劑對梨形蟲感染後排除期排除合併避水壓力之腸道內臟敏感性影響 27 肆、 討論 29 參考文獻 42 圖目錄 (圖1)梨形蟲感染後排除合併避水壓力對小鼠血清中皮質固醇與體重之影響 34 (圖2)梨形蟲感染後排除合併避水壓力對內臟痛覺反應之影響 35 (圖3)小腸組織神經之免疫螢光染色 36 (圖4)大腸組織神經之免疫螢光染色 37 (圖5)CCK在小腸和大腸組織、背根神經節之蛋白質總量 38 (圖6)CCK-AR在小腸和大腸組織、背根神經節之蛋白質總量 39 (圖7)CCK-BR在小腸和大腸組織、背根神經節之蛋白質總量 40 (圖8) 膽囊收縮素受器拮抗劑對梨形蟲感染後排除合併避水壓力之腸道內臟敏感性影響 41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 精神壓力 | zh_TW |
| dc.subject | 腸躁症 | zh_TW |
| dc.subject | 梨形蟲 | zh_TW |
| dc.subject | 內臟高敏感性 | zh_TW |
| dc.subject | irritable bowel syndrome | en |
| dc.subject | psychological stress | en |
| dc.subject | Giardia lamblia | en |
| dc.subject | visceral hypersensitivity | en |
| dc.title | 神經內分泌物質在後感染腸躁症小鼠之內臟高敏感性機轉中所扮演的角色 | zh_TW |
| dc.title | Roles of neuroendocrines on mechanism of visceral hypersensitivity in a mouse model of postinfectious irritable bowel syndrome | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 忻凌偉,游偉絢,孫錦虹 | |
| dc.subject.keyword | 腸躁症,精神壓力,梨形蟲,內臟高敏感性, | zh_TW |
| dc.subject.keyword | irritable bowel syndrome,psychological stress,Giardia lamblia,visceral hypersensitivity, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
