Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56011
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂學士(Shey-Shi Lu)
dc.contributor.authorYu-Hao Chenen
dc.contributor.author陳又豪zh_TW
dc.date.accessioned2021-06-16T05:12:57Z-
dc.date.available2019-09-02
dc.date.copyright2014-09-02
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation[1] B. Japsen, “New Study Says Obamacare Will Boost Consumer Medical Device Market To $ 10 Billion,” Forbes, 2013. [Online]. Available: http://www.forbes.com/sites/brucejapsen/2013/09/13/obamacare-will-boost-consumer-medical-device-market-to-10-billion/. [Accessed: 13-Sep-2013].
[2] P. Georgiou and C. Toumazou, “ISFET characteristics in CMOS and their application to weak inversion operation,” Sensors Actuators B Chem., vol. 143, no. 1, pp. 211–217, Dec. 2009.
[3] W. F. H. Abdullah, M. Othman, M. A. M. Ali, and M. S. Islam, “Knowledge Representation of Ion-Sensitive Field-Effect Transistor Voltage Response for Potassium Ion Concentration Detection in Mixed Potassium/Ammonium Ion Solutions,” Am. J. Appl. Sci., vol. 7, no. 1, pp. 81–88, 2010.
[4] N. Abramova, A. Ipatov, S. Levichev, and A. Bratov, “Integrated multi-sensor chip with photocured polymer membranes containing copolymerized plasticizer for direct pH, potassium, sodium and chloride ions determination in blood serum,” Talanta, vol. 79, no. 4, pp. 984–9, Sep. 2009.
[5] P. Bergveld, “Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements,” IEEE Trans. Biomed. Eng., pp. 70–71, 1970.
[6] C. D. Fung, P. W. Cheung, and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron Devices, vol. 33, no. 1, pp. 8–18, 1986.
[7] L. Bousse, N. F. De Rooij, and P. Bergveld, “Operation of Chemically Sensitive Field-Effect Sensors As a Function of the Insulator-Electrolyte Interface,” IEEE Trans. Electron Devices, vol. ED-30, no. 10, pp. 1263–1270, 1983.
[8] D. C. Scott, “An Integrated Sensor for Electrochemical Measurements,” IEEE Trans. Biomed. Eng., vol. BME-33, no. 2, pp. 83–90, 1986.
[9] T. Prodromakis and Y. Liu, “Exploiting CMOS Technology to Enhance the Performance of ISFET Sensors,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 1053–1055, 2010.
[10] D.-C. Li, P.-H. Yang, and M. S.-C. Lu, “CMOS Open-Gate Ion-Sensitive Field-Effect Transistors for Ultrasensitive Dopamine Detection,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2761–2767, Oct. 2010.
[11] M. Kamahori, Y. Ishige, and M. Shimoda, “Detection of DNA hybridization and extension reactions by an extended-gate field-effect transistor: characterizations of immobilized DNA-probes and role of applying a superimposed high-frequency voltage onto a reference electrode,” Biosens. Bioelectron., vol. 23, no. 7, pp. 1046–54, Feb. 2008.
[12] M. J. Milgrew and D. R. S. Cumming, “Matching the Transconductance Characteristics of CMOS ISFET Arrays by Removing Trapped Charge,” IEEE Trans. Electron Devices, vol. 55, no. 4, pp. 1074–1079, Apr. 2008.
[13] S. Jamasb, S. D. Collins, and R. L. Smith, “A Physical Model for Threshold Voltage Instability in Si3N4-Gate H+-Sensitive FET’s (pH ISFET's),” IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1239–1244, 1998.
[14] M. Birkholz, K.-E. Ehwald, D. Wolansky, I. Costina, C. Baristiran-Kaynak, M. Frohlich, H. Beyer, A. Kapp, and F. Lisdat, “Corrosion-resistant metal layers from a CMOS process for bioelectronic applications,” Surf. Coatings Technol., vol. 204, no. 12–13, pp. 2055–2059, 2010.
[15] A. Yasui, Sebastian F. Hoeft, H. J. Stein, T. R. DeMeester, R. M. Bremner, and Y. Nimura, “An Alkaline Stomach Is Common to Barrett’s Esophagus and Gastric Carcinoma,” Recent Adv. Dis. Esophagus, pp. 169–172, 1993.
[16] P.-H. Kuo, J.-Y. Hsieh, Y.-C. Huang, Y.-J. Huang, R.-D. Tsai, T. Wang, H.-W. Chiu, and S.-S. Lu, “A Remotely Controlled Locomotive IC Driven by Electrolytic Bubbles and Wireless Powering,” Int. Solid-State Circuits Conf., pp. 322–324, 2014.
[17] A. Kumar, S. Aravamudhan, M. Gordic, S. Bhansali, and S. S. Mohapatra, “Ultrasensitive detection of cortisol with enzyme fragment complementation technology using functionalized nanowire,” Biosens. Bioelectron., vol. 22, no. 9–10, pp. 2138–44, Apr. 2007.
[18] M. K. Dawood, L. Zhou, H. Zheng, H. Cheng, G. Wan, R. Rajagopalan, H. P. Too, and W. K. Choi, “Nanostructured Si-nanowire microarrays for enhanced-performance bio-analytics,” Lab Chip, vol. 12, no. 23, pp. 5016–24, Dec. 2012.
[19] W. U. Wang, C. Chen, K. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 9, pp. 3208–12, Mar. 2005.
[20] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol., vol. 23, no. 10, pp. 1294–301, Oct. 2005.
[21] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, no. 5533, pp. 1289–92, Aug. 2001.
[22] J. Hahm and C. M. Lieber, “Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors,” Nano Lett., vol. 4, no. 1, pp. 51–54, Jan. 2004.
[23] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, “Electrical detection of single viruses,” Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 39, pp. 14017–22, Sep. 2004.
[24] B. P. Timko, F. Patolsky, and C. M. Lieber, “Response to Comment on ‘Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays,’” Science (80-. )., vol. 323, p. 1429c, 2009.
[25] E. Stern, J. F. Klemic, D. a Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. a LaVan, T. M. Fahmy, and M. a Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires.,” Nature, vol. 445, no. 7127, pp. 519–22, Mar. 2007.
[26] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires,” Nano Lett., vol. 4, no. 2, pp. 245–247, 2004.
[27] Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K. D. Buddharaju, and J. Kong, “Silicon nanowire arrays for label-free detection of DNA,” Anal. Chem., vol. 79, no. 9, pp. 3291–7, May 2007.
[28] H.-C. Lin, M.-H. Lee, C.-J. Su, T.-Y. Huang, C. C. Lee, and Y.-S. Yang, “A Simple and Low-Cost Method to Fabricate TFTs With Poly-Si Nanowire Channel,” IEEE Electron Device Lett., vol. 26, no. 9, pp. 643–645, 2005.
[29] H. Lin, M. Lee, C.-J. Su, and S.-W. Shen, “Fabrication and Characterization of Nanowire Transistors With Solid-Phase Crystallized Poly-Si Channels,” IEEE Trans. electron devices, vol. 53, no. 10, pp. 2471–2477, 2006.
[30] C.-Y. Hsiao, C.-H. Lin, C.-H. Hung, C.-J. Su, Y.-R. Lo, C.-C. Lee, H.-C. Lin, F.-H. Ko, T.-Y. Huang, and Y.-S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron., vol. 24, no. 5, pp. 1223–9, Jan. 2009.
[31] C.-H. Lin, C.-Y. Hsiao, C.-H. Hung, Y.-R. Lo, C.-C. Lee, C.-J. Su, H.-C. Lin, F.-H. Ko, T.-Y. Huang, and Y.-S. Yang, “Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor,” Chem. Commun. (Camb)., no. 44, pp. 5749–51, Nov. 2008.
[32] Y. Tsuda, Y. Sakoda, S. Sakabe, T. Mochizuki, Y. Namba, and H. Kida, “Development of an Immunochromatographic Kit for Rapid Diagnosis of H5 Avian Influenza Virus Infection,” Microbiol. Immunol., vol. 51, pp. 903–907, 2007.
[33] M. Chen, H. Chen, C. Lin, C. Tsai, C. Hsieh, J. Horng, J. Qiu, C. Huang, and F. Yang, “A novel smart nanowire biosensor with hybrid sensor/memory/CMOS technology,” 2010 Int. Electron Devices Meet., pp. 36.2.1–36.2.4, Dec. 2010.
[34] R. W. Schrier, W. Wang, B. Poole, and A. Mitra, “Science in medicine Acute renal failure : definitions , diagnosis , pathogenesis , and therapy,” J. Clin. Invest., vol. 114, no. 1, pp. 5–14, 2004.
[35] J. Mishra, C. Dent, R. Tarabishi, M. M. Mitsnefes, Q. Ma, C. Kelly, S. M. Ruff, K. Zahedi, M. Shao, J. Bean, K. Mori, J. Barasch, and P. Devarajan, “Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery.,” Lancet, vol. 365, no. 9466, pp. 1231–8, 2005.
[36] 郭錦輯, 周鈺翔, 李柏葒, 陳昶旭, 王介立, 蔡壁如, 吳允升, 林水龍, 陳永銘, 吳寬墩, 蔡敦仁, 柯文哲, and 吳明修, “急性腎損傷與重症透析之最新進展,” 內科學誌, vol. 20, pp. 320–334, 2009.
[37] Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, “Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation,” Appl. Phys. A, vol. 80, no. 6, pp. 1257–1263, Mar. 2005.
[38] P. R. Nair and M. A. Alam, “Design Considerations of Silicon Nanowire Biosensors,” IEEE Trans. electron devices, vol. 54, no. 12, pp. 3400–3408, 2007.
[39] J. Li, Y. Zhang, S. To, L. You, and Y. Sun, “Effect of Nanowire Number, Diameter , and Doping Density on Nano-FET Biosensor Sensitivity,” Am. Chem. Soc. Nano, vol. 5, no. 8, pp. 6661–6668, 2011.
[40] J.-H. Ahn, J.-Y. Kim, K. Choi, D.-I. Moon, C.-H. Kim, M.-L. Seol, T. J. Park, S. Y. Lee, and Y.-K. Choi, “Nanowire FET Biosensors on a Bulk Silicon Substrate,” IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2243–2249, Aug. 2012.
[41] 黃哲偉 and 林致廷, “CMOS 感測系統單晶片之研製(CMOS Based Sensor System-on-Chip),” 國立臺灣大學, 2012.
[42] 黃毓傑 and 呂學士, “全整合智慧CMOS生醫系統單晶片設計與實現(Design and Implementation of Fully-integrated Smart CMOS Biomedical SoCs),” 國立台灣大學, 2014.
[43] P. K. Chan and J. Cui, “Design of Chopper-Stabilized Amplifiers With Reduced Offset for Sensor Applications,” IEEE Sens. J., vol. 8, no. 12, pp. 1968–1980, Dec. 2008.
[44] C.-W. Huang, Y.-J. Huang, S.-S. Lu, and C.-T. Lin, “A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology,” Sensors, vol. 12, no. 12, pp. 11592–11600, Aug. 2012.
[45] C. Mall, D. M. Rocke, B. Durbin-Johnson, and R. H. Weiss, “Stability of miRNA in human urine supports its biomarker potential,” Biomark. Med., vol. 7, no. 4, pp. 623–631, 2013.
[46] R. Nassirpour, S. Mathur, M. M. Gosink, Y. Li, A. M. Shoieb, J. Wood, S. P. O Neil, B. L. Homer, and L. O. Whiteley, “Identification of tubular injury microRNA biomarkers in urine: comparison of next-generation sequencing and qPCR-based profiling platforms,” BMC Genomics, vol. 15, no. 1, p. 485, Jun. 2014.
[47] I. Z. Ben-Dov, Y.-C. Tan, P. Morozov, P. D. Wilson, H. Rennert, J. D. Blumenfeld, and T. Tuschl, “Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline,” PLoS One, vol. 9, no. 1, p. e86856, Jan. 2014.
[48] T. a Haj-Ahmad, M. A. Abdalla, and Y. Haj-Ahmad, “Potential Urinary miRNA Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients,” J. Cancer, vol. 5, no. 3, pp. 182–91, Jan. 2014.
[49] M. J. Roobol, A. Haese, and A. Bjartell, “Tumour markers in prostate cancer III: biomarkers in urine,” Acta Oncol., vol. 50 Suppl 1, no. September 2010, pp. 85–9, Jun. 2011.
[50] M. A. Abdalla and Y. Haj-Ahmad, “Promising Candidate Urinary MicroRNA Biomarkers for the Early Detection of Hepatocellular Carcinoma among High-Risk Hepatitis C Virus Egyptian Patients,” J. Cancer, vol. 3, no. 3, pp. 19–31, Jan. 2012.
[51] S. J. Yun, P. Jeong, W.-T. Kim, T. H. Kim, Y.-S. Lee, P. H. Song, Y.-H. Choi, I. Y. Kim, S.-K. Moon, and W.-J. Kim, “Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer,” Int. J. Oncol., vol. 41, no. 5, pp. 1871–8, Nov. 2012.
[52] H. Dong, J. Lei, L. Ding, Y. Wen, H. Ju, and X. Zhang, “MicroRNA: function, detection, and bioanalysis,” Chem. Rev., vol. 113, no. 8, pp. 6207–33, Aug. 2013.
[53] D. A. C. Simpson, S. Feeney, C. Boyle, and A. W. Stitt, “Retinal VEGF mRNA measured by SYBR Green I fluorescence : A versatile approach to quantitative PCR,” Mol. Vis., vol. 6, no. 22, pp. 178–183, 2000.
[54] D. M. Garner, H. Bai, P. Georgiou, T. G. Constandinou, S. Reed, L. M. Shepherd, W. W. Jr, K. T. Lim, and C. Toumazou, “A Multichannel DNA SoC for Rapid Point-of-Care Gene Detection,” Int. Solid-State Circuits Conf., pp. 492–494, 2010.
[55] C. Toumazou and S. Purushothaman, “QPCR Using Solid-State Sensing,” US 7888015B22011.
[56] L. M. Shepherd, S. Member, and C. Toumazou, “A Biochemical Translinear Principle With Weak Inversion ISFETs,” IEEE Trans. Circuits Syst., vol. 52, no. 12, pp. 2614–2619, 2005.
[57] J. M. Rothberg, W. Hinz, T. M. Rearick, J. Schultz, W. Mileski, M. Davey, J. H. Leamon, K. Johnson, M. J. Milgrew, M. Edwards, J. Hoon, J. F. Simons, D. Marran, J. W. Myers, J. F. Davidson, A. Branting, J. R. Nobile, B. P. Puc, D. Light, T. a Clark, M. Huber, J. T. Branciforte, I. B. Stoner, S. E. Cawley, M. Lyons, Y. Fu, N. Homer, M. Sedova, X. Miao, B. Reed, J. Sabina, E. Feierstein, M. Schorn, M. Alanjary, E. Dimalanta, D. Dressman, R. Kasinskas, T. Sokolsky, J. a Fidanza, E. Namsaraev, K. J. McKernan, A. Williams, G. T. Roth, and J. Bustillo, “An integrated semiconductor device enabling non-optical genome sequencing,” Nature, vol. 475, no. 7356, pp. 348–52, Jul. 2011.
[58] C.-W. Huang, Y.-J. Huang, P.-W. Yen, H.-T. Hsueh, C.-Y. Lin, M.-C. Chen, C. Ho, F.-L. Yang, H.-H. Tsai, H.-H. Liao, Y.-Z. Juang, C.-K. Wang, C.-T. Lin, and S.-S. Lu, “A Fully Integrated Hepatitis B Virus DNA Detection SoC based on Monolithic Polysilicon Nanowire CMOS Process,” Symp. VLSI Circuits Dig. Tech. Pap., pp. 124–125, 2012.
[59] C. Huang, Y. Huang, T. Lin, C. Lin, J. Lee, L. Chen, P. Hsiao, B. Wu, H. Hsueh, B. Kuo, H. Tsai, H. Liao, Y. Juang, S. Lu, and C. Wang, “An Integrated Microcantilever-Based Wireless DNA Chip For Hepatitis B Virus (HBV) DNA Detection,” in 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2011, pp. 984–986.
[60] P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt, “Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide,” Science, vol. 254, no. 5037, pp. 1497–500, Dec. 1991.
[61] M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules,” Nature, vol. 365, pp. 566 – 568, 1993.
[62] P. Wittung, P. E. Nielsen, O. Buchardt, M. Egholm, and B. Norde’N, “DNA-like double helix formed by peptide nucleic acid,” Nature, vol. 368, pp. 561 – 563, 1994.
[63] W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, “Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement,” J. Micromechanics Microengineering, vol. 23, no. 6, p. 065008, Jun. 2013.
[64] B. J. Kang, C. K. Lee, and J. H. Oh, “All-inkjet-printed electrical components and circuit fabrication on a plastic substrate,” Microelectron. Eng., vol. 97, no. 4023, pp. 251–254, Sep. 2012.
[65] S. M. Bidoki, J. Nouri, and a a Heidari, “Inkjet deposited circuit components,” J. Micromechanics Microengineering, vol. 20, no. 5, p. 055023, May 2010.
[66] L. Liu, K. Guo, J. Lu, S. S. Venkatraman, D. Luo, K. C. Ng, E.-A. Ling, S. Moochhala, and Y.-Y. Yang, “Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier.,” Biomaterials, vol. 29, no. 10, pp. 1509–17, Apr. 2008.
[67] F. Kreppel and S. Kochanek, “Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide.,” Mol. Ther., vol. 16, no. 1, pp. 16–29, Jan. 2008.
[68] L. J. Cruz, P. J. Tacken, R. Fokkink, and C. G. Figdor, “The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells,” Biomaterials, vol. 32, no. 28, pp. 6791–803, Oct. 2011.
[69] Y. Takeda, K. Totani, I. Matsuo, and Y. Ito, “Chemical approaches toward understanding glycan-mediated protein quality control.,” Curr. Opin. Chem. Biol., vol. 13, no. 5–6, pp. 582–91, Dec. 2009.
[70] D. Kim and A. E. Herr, “Protein immobilization techniques for microfluidic assays.,” Biomicrofluidics, vol. 7, no. 4, p. 41501, Jan. 2013.
[71] N. Yoshimoto and S. Yamamoto, “PEGylated protein separations: challenges and opportunities.,” Biotechnol. J., vol. 7, no. 5, pp. 592–3, May 2012.
[72] H. J. Levine, “Rest heart rate and life expectancy,” J. Am. Coll. Cardiol., vol. 30, no. 4, pp. 1104–6, Oct. 1997.
[73] Y. Yu, J. Zhang, and J. Liu, “Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit,” PLoS One, vol. 8, no. 3, p. e58771, Jan. 2013.
[74] D. H. Hubel, “Tungsten Microelectrode for Recording from Single Units,” Science (80-. )., vol. 125, no. 3247, pp. 549–550, 1957.
[75] T. M. Rizki, “The circulatory system and associated cells and tissues,” in The Genetics and Biology of Drosophila, vol. 80, no. 2, 1978, pp. 397–452.
[76] C. Papaefthimiou and G. Theophilidis, “An In Vitro Method For Recording The Electrical Activity Of The Isolated Heart Of The Adult Drosophila Melanogaster,” Vitr. Cell. Dev. Biol. Anim., vol. 37, no. 7, pp. 445–449, 2013.
[77] J. F. Thayer and R. D. Lane, “Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration,” Neurosci. Biobehav. Rev., vol. 33, no. 2, pp. 81–8, Feb. 2009.
[78] Y. Gao, H. Li, and J. Liu, “Direct writing of flexible electronics through room temperature liquid metal ink,” PLoS One, vol. 7, no. 9, p. e45485, Jan. 2012.
[79] M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. a. Weiss, D. a. Weitz, and G. M. Whitesides, “Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature,” Adv. Funct. Mater., vol. 18, no. 7, pp. 1097–1104, Apr. 2008.
[80] Y. M. Y. M. Chi, T. Jung, and G. Cauwenberghs, “Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review,” IEEE Rev. Biomed. Eng., vol. 3, pp. 106–119, 2010.
[81] A. Baba and M. Burke, “Measurement of the electrical properties of ungelled ECG electrodes,” Int. J. Biol. Biomed. Eng., vol. 2, no. 3, pp. 89–97, 2008.
[82] M. Neuman, “Biopotential electrodes,” Med. Instrum. Appl. Des., vol. 1, pp. 189–240, 1988.
[83] S. Sanyal, C. Consoulas, H. Kuromi, A. Basole, L. Mukai, Y. Kidokoro, K. S. Krishnan, and M. Ramaswami, “Analysis of Conditional Paralytic Mutants in Drosophila Sarco-Endoplasmic Reticulum Calcium ATPase Reveals Novel Mechanisms for Regulating Membrane Excitability,” Genetics, vol. 169, pp. 737–50, Feb. 2005.
[84] J. B. Duffy, “GAL4 system in Drosophila: a fly geneticist’s Swiss army knife,” Genesis, vol. 34, no. 1–2, pp. 1–15, 2002.
[85] N. Lalevee, B. Monier, S. Senatore, L. Perrin, and M. Semeriva, “Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel,” Curr. Biol., vol. 16, no. 15, pp. 1502–1508, Aug. 2006.
[86] K. Ocorr, N. L. Reeves, R. J. Wessells, M. Fink, H.-S. V. Chen, T. Akasaka, S. Yasuda, J. M. Metzger, W. Giles, J. W. Posakony, and R. Bodmer, “KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 10, pp. 3943–8, Mar. 2007.
[87] S. Sanyal, T. Jennings, H. Dowse, and M. Ramaswami, “Conditional mutations in SERCA, the Sarco-endoplasmic reticulum Ca2+-ATPase, alter heart rate and rhythmicity in Drosophila,” J. Comp. Physiol. B, vol. 176, no. 3, pp. 253–263, Mar. 2006.
[88] L. Ma, A. Bradu, A. G. Podoleanu, and J. W. Bloor, “Arrhythmia caused by a Drosophila tropomyosin mutation is revealed using a novel optical coherence tomography instrument,” PLoS One, vol. 5, no. 12, p. e14348, Jan. 2010.
[89] R. Campan, “Light-Induced Heart-Beat Disturbances: Comparative Study In Calliphora Vomitoria (Linnaeus 1758) (Diptera) And Nemobius Sylvestris (Bosc 1792)(Orthoptera),” Monit. Zool. Ital. - Ital. J. Zool., vol. 6, pp. 269–289, 1972.
[90] P. E. Marik, “Noninvasive cardiac output monitors: a state-of the-art review,” J. Cardiothorac. Vasc. Anesth., vol. 27, no. 1, pp. 121–134, Feb. 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56011-
dc.description.abstractCMOS 感測系統單晶片提供重點照護低成本、即時偵測並即刻對訊號做處理與可攜帶性之可能性。在本研究中利用台積電0.35μm 標準製程技術,整合化學、生物與電的原理共研製三種感測系統單晶片。
第一種為利用參考式電晶體(ReFET)實現一酸鹼感測電路,其感測靈敏度可達34.242 mV/pH,可用於感測人體內pH變化。
第二種是多晶矽奈米線生物分子感測系統單晶片,利用標準半導體製程後,透過後段製程蝕刻處理,可將多晶矽奈米線裸露作為感測之用。根據實驗結果,此感測系統晶片對急性腎損傷的生物標記分子NGAL 之靈敏度可達3pg/ml。
第三種則是對果蠅心電量測的感測晶片,此晶片於標準半導體製程後透過液態金屬銦鎵共金(Indium Gallium, InGa)塗布,可做為導電介質於單晶片及果蠅體表上,根據實驗結果,此種方式可以實現非侵入式果蠅心電量測。
此三種感測系統單晶片在未來有極高的潛力可做為重點照護之用。它們的效能可媲美甚至是超越現有商業產品或是技術。
本文中所提出之電路均使用台積電0.35μm 標準製程技術實現。
zh_TW
dc.description.abstractCMOS based sensor system-on-chip (SoC) have a great potential to realize the vision of future point-of-care testing (POCT) service with low-cost, real-time detection following with data processing and portability. We present here three types SoCs which combine chemical, biological, and electrical mechanisms using Taiwan Semiconductor Manufacturing Company’s (TSMC) 0.35 μm standard CMOS fabrication process.
First, a ReFET are realized by TSMC 0.35 μm standard CMOS fabrication process, which can reduce the drifting effect of pH sensor and the sensitivity of the ReFET is about 34.242 mV/pH.
Second, a poly-Si nanowire based bio-SoC was realized in commercial process followed by post-process steps. Measured results show NGAL (a biomarker protein of Acute Kidney Injury) limit is about 3 pg/ml.
Third, liquid metal (Indium Gallium, InGa) are used to noiselessly conduct noninvasive ECG recordings of Drosophila.
These three kinds biosensors have the high potential to be used in POCT applications in the future. The sensing performances are better than or compatible to the current methods and commercial products.
All the works are fabricated in TSMC 0.35 μm 2P4M process.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:12:57Z (GMT). No. of bitstreams: 1
ntu-103-R01943064-1.pdf: 3356454 bytes, checksum: 0d3896cef7f3407a92ae15e775d85d52 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsChapter1 Introduction 1
1.1 Introduction to Biomedical system 1
1.2 Thesis Organization 2
Chapter2 On-Chip Reference Ion-Sensitive Field-Effect Transistors for pH Sensing 4
2.1 Introduction 4
2.2 Experimental Section 10
2.2.1 The Fabrication of ReFET and its Sensing Mechanisms 10
2.2.2 Architecture and Circuit Design 14
2.3 Results and discussion 16
2.4 Conclusions 20
2.5 Future Work 22
Chapter3 Polysilicon Nanowire Based Biomolecules Sensor System-on-Chip 24
3.1 Introduction 24
3.2 Materials and Methods 28
3.2.1 Fabrication and Design of Poly-Si-NW Based Biosensor 28
3.2.2 Architecture and Circuit Design 30
3.2.3 Surface Modification and Immobilization Process of Poly Silicon Nanowire 32
3.2.4 Sensing Mechanism of Poly Silicon Nanowire Biosensor 34
3.3 Results and discussion 36
3.4 Conclusions 40
3.5 Future Work 42
Chapter4 Liquid Metal Based Drosophila ECG Recording Platform 47
4.1 Introduction 47
4.2 Materials and Methods 50
4.2.1 Electrodes 50
4.2.2 Modeling, simulation, and impedance analysis 50
4.2.3 Drosophila strains, rearing, and crosses 52
4.2.4 Electrophysiological experiment 54
4.2.5 Signal Processing 57
4.3 Results and Discussion 57
4.4 Conclusions 65
Chapter5 Conclusion 68
Reference 71
dc.language.isoen
dc.subject生醫zh_TW
dc.subject系統單晶片zh_TW
dc.subject心電zh_TW
dc.subject免標定zh_TW
dc.subject果蠅zh_TW
dc.subject液態金屬zh_TW
dc.subjectReFETzh_TW
dc.subject蛋白質檢測zh_TW
dc.subjectCMOS-MEMSzh_TW
dc.subject酸鹼感測zh_TW
dc.subject後製程zh_TW
dc.subject讀出電路zh_TW
dc.subjectpost-ICen
dc.subjectSoCen
dc.subjectbiomedicalen
dc.subjectprotein detectionen
dc.subjectnanowireen
dc.subjectreadouten
dc.subjectlabel-freeen
dc.subjectCMOS-MEMSen
dc.subjectDrosophilaen
dc.subjectECGen
dc.subjectliquid metalen
dc.subjectReFETen
dc.subjectpH sensoren
dc.title應用於生醫訊號偵測之CMOS感測單晶片研製zh_TW
dc.titleCMOS Based Sensor System-on-Chip for Biomedical Useen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林致廷(Chih-Ting Lin),林佑昇(Yo-Sheng Lin),孫台平(Tai-Ping Sun)
dc.subject.keyword系統單晶片,生醫,後製程,蛋白質檢測,讀出電路,免標定,CMOS-MEMS,果蠅,心電,液態金屬,ReFET,酸鹼感測,zh_TW
dc.subject.keywordSoC,biomedical,post-IC,protein detection,nanowire,readout,label-free,CMOS-MEMS,Drosophila,ECG,liquid metal,ReFET,pH sensor,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2014-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved