請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56008完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張大釗(Ta-Chau Chang) | |
| dc.contributor.author | Ying-Ting Chen | en |
| dc.contributor.author | 陳瑛婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:12:53Z | - |
| dc.date.available | 2017-08-26 | |
| dc.date.copyright | 2014-08-26 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | 1. (2011) 行政院衛生署台灣地區主要死因歷年統計結果.
2. Levine, A. J., Momand, J., and Finlay, C. A. (1991) The p53 tumor suppressor gene, Nature 351, 453-456. 3. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell 144, 646-674. 4. Diaz, F., and Moraes, C. T. (2008) Mitochondrial biogenesis and turnover, Cell Calcium 44, 24-35. 5. Ernster, L., and Schatz, G. (1981) Mitochondria: a historical review, J Cell Biol 91, 227s-255s. 6. Chen, L. B. (1988) Mitochondrial membrane potential in living cells, Annu Rev Cell Biol 4, 155-181. 7. Murphy, M. P. (2008) Targeting lipophilic cations to mitochondria, Biochim Biophys Acta 1777, 1028-1031. 8. McBride, H. M., Neuspiel, M., and Wasiak, S. (2006) Mitochondria: more than just a powerhouse, Curr Biol 16, R551-560. 9. Sweet, S., and Singh, G. (1999) Changes in mitochondrial mass, membrane potential, and cellular adenosine triphosphate content during the cell cycle of human leukemic (HL-60) cells, J Cell Physiol 180, 91-96. 10. Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Giorgi, C., Leo, S., Rimessi, A., Siviero, R., Zecchini, E., and Pinton, P. (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why, Biochim Biophys Acta 1787, 1342-1351. 11. Hayashi, T., Rizzuto, R., Hajnoczky, G., and Su, T. P. (2009) MAM: more than just a housekeeper, Trends Cell Biol 19, 81-88. 12. Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P. X., and Kroemer, G. (1997) Mitochondrial implication in accidental and programmed cell death: Apoptosis and necrosis, J Bioenerg Biomembr 29, 185-193. 13. Armstrong, J. S. (2006) Mitochondria: a target for cancer therapy, Br J Pharmacol 147, 239-248. 14. Cain, K., Bratton, S. B., and Cohen, G. M. (2002) The Apaf-1 apoptosome: a large caspase-activating complex, Biochimie 84, 203-214. 15. Wu, G., Chai, J. J., Suber, T. L., Wu, J. W., Du, C. Y., Wang, X. D., and Shi, Y. G. (2000) Structural basis of IAP recognition by Smac/DIABLO, Nature 408, 1008-1012. 16. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor, Nature 397, 441-446. 17. Mate, M. J., Lombardia, M. O., Boitel, B., Haouz, A., Tello, D., Susin, S. A., Penninger, J., Kroemer, G., and Alzari, P. M. (2002) The crystal structure of the mouse apoptosis-inducing factor AIF, Nat Struct Biol 9, 442-446. 18. Miramar, M. D., Costantini, P., Ravagnan, L., Saraiva, L. M., Haouzi, D., Brothers, G., Penninger, J. M., Peleato, M. L., Kroemer, G., and Susin, S. A. (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor, J Biol Chem 276, 16391-16398. 19. Ekert, P. G., and Vaux, D. L. (2005) The mitochondrial death squad: hardened killers or innocent bystanders?, Curr Opin Cell Biol 17, 626-630. 20. Irvine, R. A., Adachi, N., Shibata, D. K., Cassell, G. D., Yu, K. F., Karanjawala, Z. E., Hsieh, C. L., and Lieber, M. R. (2005) Generation and characterization of endonuclease G null mice, Mol Cell Biol 25, 294-302. 21. Brenner, C., Cadiou, H., Vieira, H. L. A., Zamzami, N., Marzo, I., Xie, Z. H., Leber, B., Andrews, D., Duclohier, H., Reed, J. C., and Kroemer, G. (2000) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator, Oncogene 19, 329-336. 22. Ito, T., Deng, X. M., Carr, B., and May, W. S. (1997) Bcl-2 phosphorylation required for anti-apoptosis function, J Biol Chem 272, 11671-11673. 23. Yin, X. M., Oltvai, Z. N., and Korsmeyer, S. J. (1994) Bh1 and Bh2 Domains of Bcl-2 Are Required for Inhibition of Apoptosis and Heterodimerization with Bax, Nature 369, 321-323. 24. Sedlak, T. W., Oltvai, Z. N., Yang, E., Wang, K., Boise, L. H., Thompson, C. B., and Korsmeyer, S. J. (1995) Multiple Bcl-2 Family Members Demonstrate Selective Dimerizations with Bax, Proc Natl Acad Sci U S A 92, 7834-7838. 25. Esposti, M. D., and Dive, C. (2003) Mitochondrial membrane permeabilisation by Bax/Bak, Biochem Bioph Res Co 304, 455-461. 26. Korsmeyer, S. J., Wei, M. C., Saito, M., Weller, S., Oh, K. J., and Schlesinger, P. H. (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c, Cell Death Differ 7, 1166-1173. 27. Eskes, R., Desagher, S., Antonsson, B., and Martinou, J. C. (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane, Mol Cell Biol 20, 929-935. 28. Neuzil, J., Dong, L. F., Rohlena, J., Truksa, J., and Ralph, S. J. (2013) Classification of mitocans, anti-cancer drugs acting on mitochondria, Mitochondrion 13, 199-208. 29. van Delft, M. F., Wei, A. H., Mason, K. D., Vandenberg, C. J., Chen, L., Czabotar, P. E., Willis, S. N., Scott, C. L., Day, C. L., Cory, S., Adams, J. M., Roberts, A. W., and Huang, D. C. S. (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized, Cancer Cell 10, 389-399. 30. Shiau, C. W., Huang, J. W., Wang, D. S., Weng, J. R., Yang, C. C., Lin, C. H., Li, C. L., and Chen, C. S. (2006) alpha-tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function, J Biol Chem 281, 11819-11825. 31. Chang, C. C., Wu, J. Y., and Chang, T. C. (2003) A carbazole derivative synthesis for stabilizing the quadruplex structure, J Chin Chemi Soc 50, 185-188. 32. Kang, C. C. (2009) BMVC related molecules in cancer research: cancer diagnosis and photodynamic therapy, Taiwan International Graduate Program, Department of Chemistry, NTHU and IAMS, Academia Sinica. 33. Chang, C. C., Kuo, I. C., Lin, J. J., Lu, Y. C., Chen, C. T., Back, H. T., Lou, P. J., and Chang, T. C. (2004) A novel carbazole derivative, BMVC: A potential antitumor agent and fluorescence marker of cancer cells, Chem Biodivers 1, 1377-1384. 34. Kang, C. C., Chang, C. C., Chang, T. C., Liao, L. J., Lou, P. J., Xie, W., and Yeung, E. S. (2007) A handheld device for potential point-of-care screening of cancer, Analyst 132, 745-749. 35. Kang, C. C., Huang, W. C., Kouh, C. W., Wang, Z. F., Cho, C. C., Chang, C. C., Wang, C. L., Chang, T. C., Seemann, J., and Huang, L. J. (2013) Chemical principles for the design of a novel fluorescent probe with high cancer-targeting selectivity and sensitivity, Integr Biol (Camb) 5, 1217-1228. 36. Lin, I. T., Tsai, Y. L., Kang, C. C., Huang, W. C., Wang, C. L., Lin, M. Y., Lou, P. J., Shih, J. Y., Wang, H. C., Wu, H. D., Tsai, T. H., Jan, I. S., and Chang, T. C. (2014) BMVC test, an improved fluorescence assay for detection of malignant pleural effusions, Cancer Med 3, 162-173. 37. Liao, L. J., Kang, C. C., Jan, I. S., Chen, H. C., Wang, C. L., Lou, P. J., and Chang, T. C. (2009) Improved diagnostic accuracy of malignant neck lumps by a simple BMVC staining assay, Analyst 134, 708-711. 38. Lloyd, J. B. (2000) Lysosome membrane permeability: implications for drug delivery, Adv Drug Deliv Rev 41, 189-200. 39. Huang, W. C. (2013) The mechanism of BMVC-12C induced selective cytotoxicity in cancer cells., Taiwan International Graduate Program, Department of Chemistry, NTHU and IAMS, Academia Sinica. 40. Tseng, T. Y., Chien, C. H., Chu, J. F., Huang, W. C., Lin, M. Y., Chang, C. C., and Chang, T. C. (2013) Fluorescent probe for visualizing guanine-quadruplex DNA by fluorescence lifetime imaging microscopy, J Biomed Opt 18. 41. Brownlee, M. (2001) Biochemistry and molecular cell biology of diabetic complications, Nature 414, 813-820. 42. Schon, E. A., DiMauro, S., and Hirano, M. (2012) Human mitochondrial DNA: roles of inherited and somatic mutations, Nat Rev Genet 13, 878-890. 43. Modica-Napolitano, J. S., and Aprille, J. R. (2001) Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells, Adv Drug Deliv Rev 49, 63-70. 44. Johnson, L. V., Walsh, M. L., and Chen, L. B. (1980) Localization of mitochondria in living cells with rhodamine 123, Proc Natl Acad Sci U S A 77, 990-994. 45. Weiss, M. J., Wong, J. R., Ha, C. S., Bleday, R., Salem, R. R., Steele, G. D., and Chen, L. B. (1987) Dequalinium, a Topical Antimicrobial Agent, Displays Anticarcinoma Activity Based on Selective Mitochondrial Accumulation, Proc Natl Acad Sci U S A 84, 5444-5448. 46. ModicaNapolitano, J. S., Koya, K., Weisberg, E., Brunelli, B. T., Li, Y., and Chen, L. B. (1996) Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077, Cancer Res 56, 544-550. 47. Wadhwa, R., Sugihara, T., Yoshida, A., Nomura, H., Reddel, R. R., Simpson, R., Maruta, H., and Kaul, S. C. (2000) Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function, Cancer Res 60, 6818-6821. 48. Umeda, S., Muta, T., Ohsato, T., Takamatsu, C., Hamasaki, N., and Kang, D. C. (2000) The D-loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a parkinsonism-causing toxin, Eur J Biochem 267, 200-206. 49. Wanrooij, P. H., Uhler, J. P., Shi, Y. H., Westerlund, F., Falkenberg, M., and Gustafsson, C. M. (2012) A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop, Nucleic Acids Res 40, 10334-10344. 50. Venkatesh, S., Lee, J., Singh, K., Lee, I., and Suzuki, C. K. (2012) Multitasking in the mitochondrion by the ATP-dependent Lon protease, Biochim Biophys Acta 1823, 56-66. 51. Chen, S. H., Suzuki, C. K., and Wu, S. H. (2008) Thermodynamic characterization of specific interactions between the human Lon protease and G-quartet DNA, Nucleic Acids Res 36, 1273-1287. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56008 | - |
| dc.description.abstract | 近年來本實驗室合成出一系列螢光小分子BMVC及其衍生物,可以經由螢光強度有效區別癌細胞與正常細胞的分子,同時能夠穩定DNA四股結構,進而能選擇性毒殺癌症細胞。其中之一的BMVC-12C-P有機會可以發展成抗癌藥物的分子,該分子在BMVC九端的氮上接12個碳鏈與methyl-Piperidinium iodide,進入癌細胞後主要會聚集在粒線體,但在正常細胞中只有少量分佈在粒線體,另外發現其累積於粒線體的量與細胞毒殺性成正比的關係,因此BMVC-12C-P可以選擇性的殺死癌細胞。根據先前系列的研究,我們推測BMVC-12C-P會作用在mtDNA,特別是基因中G-rich的序列。
而在本篇論文中,我們透過研究結構類似的分子,觀察其在細胞內的作用模式,希望能對我們先前所提出BMVC-12C-P毒殺癌細胞的假說進行驗證。從實驗室先前的研究觀察到o-BMVC進細胞後與BMVC-12C-P同樣位在粒線體,但卻無法對細胞造成毒殺,因此我們從此處著手,第一部分為探討不同碳鏈長度的o-BMVC衍生物分子對於細胞的影響,實驗結果發現o-BMVC系列分子在細胞中大部分會位在粒線體,短碳鏈(六個碳以下)的分子在細胞內的螢光強度為弱,對細胞沒有毒殺效果,而長碳鏈(八個碳以上)反之。而第二部分則是研究BMVC-12C-P與o-BMVC-12C-P兩個不同core的分子對細胞的影響,發現到此兩個分子對細胞的影響十分類似,o-BMVC-12C-P同樣位於癌細胞內粒線體比例較高、且對癌細胞有較強的毒殺效果,另外,o-BMVC-12C-P同樣會破壞粒線體膜電位,且抑制mtND3基因(內含G-rich序列)的表現,在in vitro的實驗中發現此兩個分子對DNA結構會具有選擇的結合,較容易作用在G四股結構,且o-BMVC-12C-P對於mtND3-2的G四股結構穩定效果較BMVC-12C-P好。 從第一部分的實驗結果我們推測短碳鏈分子沒有與mtDNA作用,因此螢光較弱也無毒殺性,長碳鏈分子反之,由此可合理說明之前BMVC-12C-P毒殺細胞是透過與mtDNA作用的假說。且從第二部分可以發現到o-BMVC-12C-P與BMVC-12C-P毒殺細胞的機制類似。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:12:53Z (GMT). No. of bitstreams: 1 ntu-103-R01223205-1.pdf: 6257126 bytes, checksum: d071289aedd7903c74474c9fa0b2c2d4 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝…………………...……………………………………………………………….ii
摘要…..…...…………………………………………………………………………..iv Abstract…....…...……………………………………………………………………..vi 目錄………………………………………………………………………………….viii 圖目錄………………………………………………………………………………....x 表目錄………………………………………………………………………………..xii 第一章 緒論 1 1.1 癌症 1 1.2 粒線體 2 1.3 BMVC及其衍生物 4 第二章 研究目的 12 第三章 實驗材料與方法 13 3.1 細胞培養 13 3.3 BMVC衍生物於細胞內影像集位置觀察 14 3.4 定量分析細胞內BMVC衍生物的螢光強度 15 3.5 細胞存活率分析(MTT assay) 16 3.6 細胞群落形成分析(Colony formation assay) 17 3.7 粒線體模電位分析 17 3.8 逆轉錄聚合酶鏈式反應(Reverse Transcription-Polymerase Chain Reaction,RT-PCR) 18 3.9 抽取total DNA 19 3.10 聚合酶連鎖反應(Polymerase chain reaction,PCR) 19 3.11 洋菜膠體電用分析(Agarose electrophoresis) 20 3.12 圓二色旋光光譜儀 20 3.13 聚丙烯醯胺電泳(PAGE) 20 第四章 結果 22 4.1 探討o-BMVC九端碳鏈長度的改變對細胞的表現影響 22 4.1.1 o-BMBV衍生物吸收螢光光譜 22 4.1.2 o-BMVC衍生物在細胞內螢光強度 24 4.1.3 o-BMVC衍生物進入細胞後所位於的胞器 26 4.1.4 o-BMVC衍生物對細胞毒殺性 30 4.2 探討相同碳鏈長不同core的BMVC-12C-P及o-BMVC-12C-P小分子對細胞的影響 34 4.2.1 BMVC-12C-P與o-BMVC-12C-P在不同株細胞內的螢光表現量比較 34 4.2.2 BMVC-12C-P與o-BMVC-12C-P在不同株細胞存在於粒線體中的比例 36 4.2.3 o-BMVC-12C-P與BMVC-12C-P對於細胞毒殺性比較 38 4.2.4 粒線體膜電位測試 41 4.2.5 o-BMVC-12C-P抑制粒線體內基因表現 43 4.2.6 o-BMVC-12C-P與BMVC-12C-P對於mtND3可能形成G四股結構序列穩定度比較 46 4.2.7 G四股結構穩定劑o-BMVC-12C-P與BMVC-12C-P對雙股DNA及G四股結構DNA親合力比較 50 第五章 討論 52 第六章 結論 58 參考資料 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 化學結構 | zh_TW |
| dc.subject | G四股結構DNA | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 螢光小分子 | zh_TW |
| dc.subject | 癌細胞選擇性 | zh_TW |
| dc.subject | fluorescent small molecule | en |
| dc.subject | G-quadruplex DNA | en |
| dc.subject | Mitochondria | en |
| dc.subject | chemical sturcture | en |
| dc.subject | cancer cell selectivity | en |
| dc.title | 探討螢光o-BMVC衍生物破壞粒線體與癌細胞的作用機制 | zh_TW |
| dc.title | Investigation of Fluorescent o-BMVC Derivatives for Mitochondrial Dysfunction and Cancer Research | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林敬哲,陳進庭,牟中原 | |
| dc.subject.keyword | 粒線體,G四股結構DNA,螢光小分子,癌細胞選擇性,化學結構, | zh_TW |
| dc.subject.keyword | Mitochondria,G-quadruplex DNA,fluorescent small molecule,cancer cell selectivity,chemical sturcture, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
