請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55995
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
dc.contributor.author | Chun-Che Wang | en |
dc.contributor.author | 王俊喆 | zh_TW |
dc.date.accessioned | 2021-06-16T05:12:33Z | - |
dc.date.available | 2020-08-06 | |
dc.date.copyright | 2020-08-06 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-28 | |
dc.identifier.citation | 1.Shalaev, V.M., Optical negative-index metamaterials. Nature Photonics, 2007. 1(1): p. 41-48. 2.Khorasaninejad, M., et al., Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016. 352(6290): p. 1190-1194. 3.Wang, S., et al., Broadband achromatic optical metasurface devices. Nature Communications, 2017. 8(1): p. 187. 4.Lu, D. and Z. Liu, Hyperlenses and metalenses for far-field super-resolution imaging. Nature Communications, 2012. 3: p. 1205. 5.High, A.A., et al., Visible-frequency hyperbolic metasurface. Nature, 2015. 522(7555): p. 192-6. 6.Poddubny, A., et al., Hyperbolic metamaterials. Nature Photonics, 2013. 7(12): p. 948-957. 7.Cortes, C.L., et al., Quantum nanophotonics using hyperbolic metamaterials. Journal of Optics, 2012. 14(6): p. 063001. 8.Chandrasekar, R., et al., Lasing Action with Gold Nanorod Hyperbolic Metamaterials. ACS Photonics, 2017. 4(3): p. 674-680. 9.Lin, H.-I., et al., Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS Applied Materials Interfaces, 2019. 11(1): p. 1163-1173. 10.Wang, P., et al., Metaparticles: Dressing Nano-Objects with a Hyperbolic Coating. Laser Photonics Reviews, 2018: p. 1800179. 11.Lu, D., et al., Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells. Advanced Materials, 2018: p. 1706411. 12.Shen, K.-C., et al., Deep-Ultraviolet Hyperbolic Metacavity Laser. Advanced Materials, 2018. 30(21): p. 1706918. 13.Lin, H.-I., et al., Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform for the Enhancement of Random Laser Action. ACS Photonics, 2017. 14.Haider, G., et al., A Highly-Efficient Single Segment White Random Laser. ACS Nano, 2018. 12(12): p. 11847-11859. 15.Li, X., et al., Conformable optical coatings with epsilon near zero response. APL Photonics, 2019. 4(5): p. 056107. 16.Cho, Y., et al., Scalable, Highly Uniform, and Robust Colloidal Mie Resonators for All-Dielectric Soft Meta-Optics. Advanced Optical Materials, 2019. 7(3): p. 1801167. 17.Lin, H.-I., et al., Transient and Flexible Hyperbolic Metamaterials on Freeform Surfaces. Scientific Reports, 2018. 8(1): p. 9469. 18.Cao, H., et al., Random Laser Action in Semiconductor Powder. Physical Review Letters, 1999. 82(11): p. 2278-2281. 19.Wiersma, D.S., The physics and applications of random lasers. Nature Physics, 2008. 4(5): p. 359-367. 20.Liu, J., et al., Random nanolasing in the Anderson localized regime. Nature Nanotechnology, 2014. 9(4): p. 285-289. 21.Redding, B., M.A. Choma, and H. Cao, Speckle-free laser imaging using random laser illumination. Nature Photonics, 2012. 6: p. 355. 22.Wang, Z., et al., Controlling random lasing with three-dimensional plasmonic nanorod metamaterials. Nano Letters, 2016. 16(4): p. 2471-7. 23.Chang, S.-W., et al., A White Random Laser. Scientific Reports, 2018. 8(1): p. 2720. 24.Liao, W.-C., et al., Plasmonic Carbon-Dot-Decorated Nanostructured Semiconductors for Efficient and Tunable Random Laser Action. ACS Applied Nano Materials, 2018. 1(1): p. 152-159. 25.Shi, X., et al., Dissolvable and Recyclable Random Lasers. ACS Nano, 2017. 11(8): p. 7600-7607. 26.Hsu, Y.-T., et al., Self-Healing Nanophotonics: Robust and Soft Random Lasers. ACS Nano, 2019. 13(8): p. 8977-8985. 27.Lu, C.-H., et al., Control of morphology, photoluminescence, and stability of colloidal methylammonium lead bromide nanocrystals by oleylamine capping molecules. Journal of Colloid and Interface Science, 2016. 484: p. 17-23. 28.Hu, H.-W., et al., Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Advanced Materials, 2017. 29(43): p. 1703549-n/a. 29.Liu, Y., G. Bartal, and X. Zhang, All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Optics Express, 2008. 16(20): p. 15439-15448. 30.Wiersma, D., The smallest random laser. Nature, 2000. 406(6792): p. 133-135. 31.Ikeri, H.I., A. Onyia, and O. Vwavware, The Dependence of Confinement Energy on the Size of Quantum Dots. International Journal of Scientific Research in Physics and Applied Sciences ,2019. 7: p. 27-30. 32.Kildishev, A.V., A. Boltasseva, and V.M. Shalaev, Planar Photonics with Metasurfaces. Science, 2013. 339(6125): p. 1232009. 33.Yao, J., et al., Optical Negative Refraction in Bulk Metamaterials of Nanowires. Science, 2008. 321(5891): p. 930. 34.Ferrari, L., et al., Hyperbolic metamaterials and their applications. Progress in Quantum Electronics, 2015. 40: p. 1-40. 35.Agranovich, V.M. and V.E. Kravtsov, Notes on crystal optics of superlattices. Solid State Communications, 1985. 55(1): p. 85-90. 36.Cortes, C.L., et al., Quantum nanophotonics using hyperbolic metamaterials. Journal of Optics, 2012. 14(6): p. 063001. 37.Bogdanov, A.A. and R.A. Suris, Effect of the anisotropy of a conducting layer on the dispersion law of electromagnetic waves in layered metal-dielectric structures. JETP Letters, 2012. 96(1): p. 49-55. 38.Vincenti, M.A., et al., Loss compensation in metal-dielectric structures in negative-refraction and super-resolving regimes. Physical Review A, 2009. 80(5): p. 053807. 39.Jacob, Z., L.V. Alekseyev, and E. Narimanov, Optical Hyperlens: Far-field imaging beyond the diffraction limit. Optics Express, 2006. 14(18): p. 8247-8256. 40.Schmidt, L.C., et al., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society, 2014. 136(3): p. 850-853. 41.Poddubny, A., et al., Hyperbolic metamaterials. Nature Photonics, 2013. 7(12): p. 948-957. 42.Cao, H., et al., Random Laser Action in Semiconductor Powder. Physical Review Letters, 1999. 82(11): p. 2278-2281. 43.Hu, H.-W., et al., Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Advanced Materials, 2017. 29(43) 1703549. 44.Walpole, J.N., et al., High‐power strained‐layer InGaAs/AlGaAs tapered traveling wave amplifier. Applied Physics Letters, 1992. 61(7): p. 740-742. 45.Novotny, L. and B. Hecht, Principles of Nano-Optics. 2006: Cambridge Univ. Press, Cambridge. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55995 | - |
dc.description.abstract | 本論文研究內容結合軟性光子元件與雙曲超穎材料,軟性的光子元件具有可彎曲、可拉伸與可以適應任何基板的特性,並且藉由此特性去增加與創造人與機器互動的機會。雙曲超穎物質是一個在動量空間中擁有雙曲色散曲線的物質,因此雙曲超穎物質具有很高的光子能態密度,而我們可以利用這特性去增強光與物質的交互作用。藉由改變基板與雙曲超穎材料的材料,我們可以創造出一個可拉伸和可以適應在不同底座上的雙曲超穎材料。在實驗中,我們藉由雙曲超穎物質增強光與物質的交互作用的特性,在上面放了半導體量子粒子,創造出一個可拉伸式的隨機雷射,並且在不同基板上的量測,來檢測軟性雙曲超穎材料的可行性。這個結果對於奈米光子元件、穿戴式光子裝置、軟性機器人、植入式醫療裝置會有新的發展。 | zh_TW |
dc.description.abstract | In this thesis, we combine soft nanophotonic devices and hyperbolic metamaterial (HMM). Soft nanophotonic devices create and enhance the human-machine interactions by deliver their promises of stretchability, flexibility and conformability. An important component of nanophotonic devices, hyperbolic metamaterial has hyperbolic dispersion in its momentum space which provides HMM a large amount of photon density of state to enhance light-matter interaction. By substituting the material of substrate and HMM, we can create soft hyperbolic metamaterial (SHMM) with flexibility, conformability, and stretchability. In this study, we show that the SHMM is able to be used to integrate with semiconductor quantum dots for accomplishing enhanced laser action to check the feasibility of SHMM. This result points out the new development of nanophotonic devices and soft robots, biomedical implants and wearable photonics. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:12:33Z (GMT). No. of bitstreams: 1 U0001-2807202013524500.pdf: 6873621 bytes, checksum: ea418336d674ee12f6a7378dae4e8d49 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 摘要 I ABSTRACT IV CHAPTER 1 1 REFERENCES 4 CHAPTER 2 8 2.1 PHOTOLUMINESCENCE (PL) 8 2.2 RANDOM LASER 10 2.2.1 Mechanism 10 2.2.2 Emission property 12 2.4 HYPERBOLIC METAMATERIAL (HMM) 16 2.4.1 Definition and characteristic 16 2.4.2 Layered metal–dielectric structures 21 REFERENCE 24 CHAPTER 3 26 3.1 NANOPHOTONIC FINITE-DIFFERENCE TIME-DOMAIN SIMULATOR 26 3.2 THERMAL EVAPORATION SYSTEM 27 3.3 374 NM PULSED DIODE LASER 29 3.4 ATOMIC FORCE MICROSCOPY (AFM) 30 3.6 PEROVSKITE NANOCRYSTAL 32 3.7 POLYDIMETHYLSILOXANE 33 3.8 FABRICATION PROCESSES OF THE SOFT HYPERBOLIC METAMATERIAL (SHMM) 34 REFERENCES 39 CHAPTER 4 40 4.1 CHARACTERISTICS OF SOFT HYPERBOLIC METAMATERIAL 40 4.2 CHARACTERISTICS OF RANDOM LASER ACTION 44 4.3 THEORETICAL ANALYSIS OF SHMM 51 4.4 MULTI-FUNCTIONAL SHMM 53 REFERENCES 56 CHAPTER 5 57 | |
dc.language.iso | en | |
dc.title | 軟性雙曲超穎材料:奈米光子元件的可撓性、可拉伸性與適應性 | zh_TW |
dc.title | Soft Hyperbolic Metamaterials: Conformability, Flexibility, and Stretchability of Nanophotonics | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 沈志霖 (ZHI LIN SHEN),王偉華(WEI-HUA Wang) | |
dc.subject.keyword | 雙曲超穎材料,隨機雷射,軟性材料,鈣鈦礦結構, | zh_TW |
dc.subject.keyword | hyperbolic metamaterial,perovskite,laser action,soft,optoelectronics, | en |
dc.relation.page | 57 | |
dc.identifier.doi | 10.6342/NTU202001960 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-28 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2807202013524500.pdf 目前未授權公開取用 | 6.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。