Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55990
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor齊震宇
dc.contributor.authorShing-Yeong Huangen
dc.contributor.author黃星詠zh_TW
dc.date.accessioned2021-06-16T05:12:26Z-
dc.date.available2014-08-26
dc.date.copyright2014-08-26
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation[1] A.Grothendieck, and J.Dieudonn, Elements de geometrie algebrique.
EGA I Le langage des schemas, Publ. Math. IHES4, 1960.
EGA II Etude globale el ementaire de quelques classes de morphismes, Ibid,
1961(8).
EGA III Etude cohomologique des faisceaux coherents, Ibid, 1961(11),
1963(17).
EGA IV Etude locale des schemas et des morphismes de schemas, Ibid,
1964(20), 1965(24), 1966(28), 1967(32).
[2] David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, American Mathematical Soc., 2011.
[3] G.Kempf, F.Kundsen, D.Mumford, and B.Saint-Donat, Toroidal Embeddings I, Springer Lecture Notes 339, 1973.
[4] H.Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math. 79, 1964.
[5] Lei Fu, Algebraic Geometry, Springer, 2006.
[6] Matsumura, Hideyuki, Commutative algebra. Second edition, Math. Lecture Note Series, 56. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980.
[7] M.F.Atiyah and I.G.Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing company, Inc., 1969.
[8] Mircea Mustata, Introduction to Toric Varieties, online notes.
[9] N.Bourbaki, Commutative algebra. Chapters 1{7, Dover Books on Math.,
2009. Elements of Mathematics (Berlin). Springer-Verlag, 1998.
[10] N.Jacobson, Basic Algebra II: Second Edition, Dover Books on Math., 2009.
[11] O.Zariski and P.Samuel, Commutative Algebra (Vol. I, II), Van Nostrand, Princeton (1958,1960).
[12] Qing Liu, Algebraic Geometry and Arithmetic Curves, Oxford Univ. Press, 2002.
[13] R.Hartshorne, Algebraic Geometry, Springer, 1977.
[14] W.Fulton, Introduction to Toric Varieties, Annals of Math. Studies, Princeton Univ. Press, 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55990-
dc.description.abstractIn this thesis, we will assume basic facts about toric varieties and commutative algebra, and give a survey of [3], chapter II, with detailed proofs of all the theorems. First of all, the idea of equivariant torus embeddings will be generalized to that of so-called toroidal embeddings, which means intuitively 'locally similar to some torus embeddings'. More precisely, a toroidal embedding is a smooth variety $X$ containing a smooth open subset $U$, such that for every closed point $x in X$, there exists an $T$-equivariant embedding $X_{sigma}$ of some torus $T$, a closed point $t in X_{sigma}$, and an $k$-local algebra isomorphism:[
widehat{mathcal{O}}_{X,x} simeq widehat{mathcal{O}}_{X_{sigma},t}] and the ideal in $widehat{mathcal{O}}_{X,x} $ generated by the ideal of $Xsetminus U$ corresponds to the ideal in $widehat{mathcal{O}}_{X_{sigma},t}$ generated by the ideal of $X_{sigma}setminus T$. Next, we can stratify a toroidal embedding into different components which generalize the idea of orbits. And then we can analyze a toroidal embedding as toric cases and obtain many similar results. The main goal of this generalization is to apply those developed theorems to reduce the proof of semi-stable reduction theorem to a specific combinatorial construction.
Section 1 gives the definition of toroidal embeddings and the stratification of a toroidal embedding, and then consider the two crucial parts: $M^Y$ and $S^U({
m star}! Y)$ for a stratum $Y$ (Lemma 1.1.7 and Definition 1.1.11), which generalize the idea of $T$-invariant Cartier divisors and 1-parameter subgroup of a $T$-equivariant embedding, and we can also define a cone $sigma^Y$ in some euclidean space relative to the stratum $Y$. At the end of this section, we show that a toroidal embedding can be associated to a 'polyhedral complex', which is a collection of cones patched together similar to a fan.
Section 2 introduces 'canonical morphism' to a fixed toroidal embedding, and shows that this is equivalent to give a sub-polyhedral complex (Theorem 1.2.2). With this theorem, we then generalize theorems of toric varieties by using polyhedral complices instead of fans, including the existence of morphisms, non-singularity of such varieties and blowing-ups (Theorem 1.2.8, Theorem 1.2.9 and Theorem 1.2.16), and eventually show that there exists a non-singular blowing-up.
Section 3 provides concrete methods that we can convert the semi-stable reduction theorem to the construction of some toroidal embeddings, and then use the theorem in cite{Tor}, chapter III to show the semi-stable reduction theorem.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:12:26Z (GMT). No. of bitstreams: 1
ntu-103-R00221012-1.pdf: 468004 bytes, checksum: 452e7f9c4107f45e2aa28812f2297a46 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents0 Preliminary 7
0.1 Notation 7
0.2 Some Facts of toric varieties 8
0.3 Some Facts of commutative algebras 8
1 Semi-stable reduction 11
1.1 Toroidal embeddings - definitions 12
1.2 Toroidal embeddings - theorems 25
1.3 Reduction of the theorem to a construction 56
Bibliography 71
dc.language.isoen
dc.subject環面嵌入zh_TW
dc.subjectToroidal Embeddingsen
dc.title環面嵌入之探討zh_TW
dc.titleA Survey on Toroidal Embeddingsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林惠雯,莊武諺
dc.subject.keyword環面嵌入,zh_TW
dc.subject.keywordToroidal Embeddings,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
457.04 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved