請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55990完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 齊震宇 | |
| dc.contributor.author | Shing-Yeong Huang | en |
| dc.contributor.author | 黃星詠 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:12:26Z | - |
| dc.date.available | 2014-08-26 | |
| dc.date.copyright | 2014-08-26 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | [1] A.Grothendieck, and J.Dieudonn, Elements de geometrie algebrique.
EGA I Le langage des schemas, Publ. Math. IHES4, 1960. EGA II Etude globale el ementaire de quelques classes de morphismes, Ibid, 1961(8). EGA III Etude cohomologique des faisceaux coherents, Ibid, 1961(11), 1963(17). EGA IV Etude locale des schemas et des morphismes de schemas, Ibid, 1964(20), 1965(24), 1966(28), 1967(32). [2] David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, American Mathematical Soc., 2011. [3] G.Kempf, F.Kundsen, D.Mumford, and B.Saint-Donat, Toroidal Embeddings I, Springer Lecture Notes 339, 1973. [4] H.Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math. 79, 1964. [5] Lei Fu, Algebraic Geometry, Springer, 2006. [6] Matsumura, Hideyuki, Commutative algebra. Second edition, Math. Lecture Note Series, 56. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. [7] M.F.Atiyah and I.G.Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing company, Inc., 1969. [8] Mircea Mustata, Introduction to Toric Varieties, online notes. [9] N.Bourbaki, Commutative algebra. Chapters 1{7, Dover Books on Math., 2009. Elements of Mathematics (Berlin). Springer-Verlag, 1998. [10] N.Jacobson, Basic Algebra II: Second Edition, Dover Books on Math., 2009. [11] O.Zariski and P.Samuel, Commutative Algebra (Vol. I, II), Van Nostrand, Princeton (1958,1960). [12] Qing Liu, Algebraic Geometry and Arithmetic Curves, Oxford Univ. Press, 2002. [13] R.Hartshorne, Algebraic Geometry, Springer, 1977. [14] W.Fulton, Introduction to Toric Varieties, Annals of Math. Studies, Princeton Univ. Press, 1993. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55990 | - |
| dc.description.abstract | In this thesis, we will assume basic facts about toric varieties and commutative algebra, and give a survey of [3], chapter II, with detailed proofs of all the theorems. First of all, the idea of equivariant torus embeddings will be generalized to that of so-called toroidal embeddings, which means intuitively 'locally similar to some torus embeddings'. More precisely, a toroidal embedding is a smooth variety $X$ containing a smooth open subset $U$, such that for every closed point $x in X$, there exists an $T$-equivariant embedding $X_{sigma}$ of some torus $T$, a closed point $t in X_{sigma}$, and an $k$-local algebra isomorphism:[
widehat{mathcal{O}}_{X,x} simeq widehat{mathcal{O}}_{X_{sigma},t}] and the ideal in $widehat{mathcal{O}}_{X,x} $ generated by the ideal of $Xsetminus U$ corresponds to the ideal in $widehat{mathcal{O}}_{X_{sigma},t}$ generated by the ideal of $X_{sigma}setminus T$. Next, we can stratify a toroidal embedding into different components which generalize the idea of orbits. And then we can analyze a toroidal embedding as toric cases and obtain many similar results. The main goal of this generalization is to apply those developed theorems to reduce the proof of semi-stable reduction theorem to a specific combinatorial construction. Section 1 gives the definition of toroidal embeddings and the stratification of a toroidal embedding, and then consider the two crucial parts: $M^Y$ and $S^U({ m star}! Y)$ for a stratum $Y$ (Lemma 1.1.7 and Definition 1.1.11), which generalize the idea of $T$-invariant Cartier divisors and 1-parameter subgroup of a $T$-equivariant embedding, and we can also define a cone $sigma^Y$ in some euclidean space relative to the stratum $Y$. At the end of this section, we show that a toroidal embedding can be associated to a 'polyhedral complex', which is a collection of cones patched together similar to a fan. Section 2 introduces 'canonical morphism' to a fixed toroidal embedding, and shows that this is equivalent to give a sub-polyhedral complex (Theorem 1.2.2). With this theorem, we then generalize theorems of toric varieties by using polyhedral complices instead of fans, including the existence of morphisms, non-singularity of such varieties and blowing-ups (Theorem 1.2.8, Theorem 1.2.9 and Theorem 1.2.16), and eventually show that there exists a non-singular blowing-up. Section 3 provides concrete methods that we can convert the semi-stable reduction theorem to the construction of some toroidal embeddings, and then use the theorem in cite{Tor}, chapter III to show the semi-stable reduction theorem. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:12:26Z (GMT). No. of bitstreams: 1 ntu-103-R00221012-1.pdf: 468004 bytes, checksum: 452e7f9c4107f45e2aa28812f2297a46 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 0 Preliminary 7
0.1 Notation 7 0.2 Some Facts of toric varieties 8 0.3 Some Facts of commutative algebras 8 1 Semi-stable reduction 11 1.1 Toroidal embeddings - definitions 12 1.2 Toroidal embeddings - theorems 25 1.3 Reduction of the theorem to a construction 56 Bibliography 71 | |
| dc.language.iso | en | |
| dc.subject | 環面嵌入 | zh_TW |
| dc.subject | Toroidal Embeddings | en |
| dc.title | 環面嵌入之探討 | zh_TW |
| dc.title | A Survey on Toroidal Embeddings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林惠雯,莊武諺 | |
| dc.subject.keyword | 環面嵌入, | zh_TW |
| dc.subject.keyword | Toroidal Embeddings, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 457.04 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
