Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55956
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏齡(Po-Ling Kuo)
dc.contributor.authorTang-Ting Chuen
dc.contributor.author朱唐廷zh_TW
dc.date.accessioned2021-06-16T05:11:37Z-
dc.date.available2016-08-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation[1] A. A. Biewener and T. J. Roberts, 'Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective,' Exerc Sport Sci Rev, vol. 28, pp. 99-107, 2000.
[2] Y. C. Fung, Biomechanics: mechanical properties of living tissues, 2nd ed. New York: Springer, 1993.
[3] P. L. Kuo, P. C. Li, and M. L. Li, 'Elastic properties of tendon measured by two different approaches,' Ultrasound Med Biol, vol. 27, pp. 1275-84, 2001.
[4] L. A. Spyrou and N. Aravas, 'Muscle and tendon tissues: constitutive modeling and computational issues.,' J Appl Mech, vol. 78, pp. 410-15, 2011.
[5] C. C. Ooi, P. Malliaras, M. E. Schneider, and D. A. Connell, ''Soft, hard, or just right?' Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries,' Skeletal Radiol, vol. 43, pp. 1-12, 2014.
[6] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, 'Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,' Ultrasound Med Biol, vol. 24, pp. 1419-35, 1998.
[7] J. Bercoff, M. Tanter, and M. Fink, 'Supersonic shear imaging: a new technique for soft tissue elasticity mapping,' IEEE Trans Ultrason Ferroelectr Freq Control, vol. 51, pp. 396-409, 2004.
[8] N. Frulio, H. Trillaud, P. Perez, J. Asselineau, M. Vandenhende, M. Hessamfar, F. Bonnet, F. Maire, J. Delaune, V. De Ledinghen, and P. Morlat, 'Acoustic Radiation Force Impulse (ARFI) and Transient Elastography (TE) for evaluation of liver fibrosis in HIV-HCV co-infected patients,' BMC Infect Dis, vol. 14, p. 405, 2014.
[9] L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, 'Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,' Ultrasound Med Biol, vol. 29, pp. 1705-13, 2003.
[10] J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, 'In vivo breast tumor detection using transient elastography,' Ultrasound Med Biol, vol. 29, pp. 1387-96, 2003.
[11] C. L. Yeh, P. L. Kuo, and P. C. Li, 'Correlation between the shear wave speed in tendon and its elasticity properties,' in IEEE International Ultrasonics Symposium, Prague, 2013, pp. 9-12.
[12] S. Aubry, J. R. Risson, A. Kastler, B. Barbier-Brion, G. Siliman, M. Runge, and B. Kastler, 'Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography,' Skeletal Radiol, vol. 42, pp. 1143-50, 2013.
[13] Z. J. Zhang and S. N. Fu, 'Shear Elastic Modulus on Patellar Tendon Captured from Supersonic Shear Imaging: Correlation with Tangent Traction Modulus Computed from Material Testing System and Test-Retest Reliability,' PLoS One, vol. 8, p. e68216, 2013.
[14] K. H. Lee, B. A. Szajewski, Z. Hah, K. J. Parker, and A. M. Maniatty, 'Modeling shear waves through a viscoelastic medium induced by acoustic radiation force,' J Numer Meth Biomed Eng, vol. 28, pp. 678-696, 2012.
[15] C. Y. Tang, G. Y. Ng, Z. W. Wang, C. P. Tsui, and G. Zhang, 'Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM,' Biomed Mater Eng, vol. 21, pp. 9-24, 2011.
[16] J. L. Gennisson, T. Deffieux, M. Fink, and M. Tanter, 'Ultrasound elastography: principles and techniques,' Diagn Interv Imaging, vol. 94, pp. 487-95, 2013.
[17] D. S. S. Corp., 'ABAQUS Manual 6.10,' Providence, RI, 2010.
[18] S. F. Levinson, 'Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory,' J Biomech, vol. 20, pp. 251-60, 1987.
[19] L. Yin and D. M. Elliott, 'A biphasic and transversely isotropic mechanical model for tendon: application to mouse tail fascicles in uniaxial tension,' J Biomech, vol. 37, pp. 907-16, 2004.
[20] J. L. G. D. Royer, T. Deffieux, and M. Tanter, 'On the elasticity of transverse isotropic soft tissues (L),' J Acoust Soc Am, vol. 129, pp. 2757-60, 2011.
[21] J. A. Weiss and J. C. Gardiner, 'Computational modeling of ligament mechanics,' Crit Rev Biomed Eng, vol. 29, pp. 303-71, 2001.
[22] M. R. Gurvich, 'A constitutive model of hyperelastic anisotropic materials: approach and implementation in ABAQUS,' in ABAQUS Users’ Conference, Boston, MA, 2004, pp. 281-289.
[23] A. Caenen, 'Numerical and Experimental Assessment of Supersonic Shear Wave Imaging as New Non-Invasive Ultrasound Technique for Arterial Stiffness,' M.S. thesis, Dept. Biomed. Eng., Gent Univ., Gent, Belgium, 2013.
[24] J. Brum, M. Bernal, J. L. Gennisson, and M. Tanter, 'In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis,' Phys Med Biol, vol. 59, pp. 505-23, 2014.
[25] S. Federico, A. Grillo, S. Imatani, G. Giaquinta, and W. Herzog, 'An energetic approach to the analysis of anisotropic hyperelastic materials,' J Eng Sci, vol. 46, pp. 164-181, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55956-
dc.description.abstract肌腱的功能是將肌肉產生的力量傳遞到骨頭以協助肢體的移動,並儲存或釋放來自肌肉產生的能量以助調節力量,使肌肉有較良好的力量輸出而不致使受傷。肌腱功能的正常性仰賴肌腱合適的拉伸彈性,也就是肌腱拉伸方向的楊氏係數E,肌腱的傷害來自於過度的使用並且與活動時肌腱所承受的力量息息相關,因此研究肌腱承受不同力量時肌腱的彈性變化,有助於臨床上分辨正常與病變肌腱並追蹤治療成效。近年來,使用超音波彈性影像定量組織內彈性已經被廣泛應用,尤其在等向性、均質性和線性彈性組織特性下,可以從剪力模數推導出楊氏係數.但是在我們先前單軸拉伸實驗和彈性影像量測中發現,肌腱拉伸彈性與沿著拉伸方向傳遞的剪切波波速兩者皆會隨著施加其上的拉力增大(0—3N)而近似線性增加
,正常肌腱的彈性從2.69 MPpa增加到13.78 MPpa,剪切波速度從7.29 m/s上升到21.40 m/s,而病變肌腱的彈性從1.43 MpPa增加到8.5 MPpa,剪切波速度從6.01 m/s上升到17.74 m/s.但是透過單軸拉伸所得的彈性無法和一般組織之剪切波波速轉換彈性公式做關聯(也就是彈性等於三倍密度乘上波速平方,E=3ρ(v_s)^2.主要原因來自於肌腱存在非等向性結構和非線性彈性特性。此外,若引入橫向等向性模型來定量肌腱彈性時,則需量測五個參數:C_11, C_13, C_33, C_44和 C_66 ,這些參數可透過超音波縱橫波波速量測而得 .然而,實際上波速的量測過於困難。為了更精確描述肌腱彈性並輔助建立彈性影像,本文使用橫向等向性(transverse isotropy)模型描述其纖維方向及等向性平面,並利用超彈性(hyperelastic)模型定義其非線性應力應變曲線,透過ABAQUS來模擬肌腱單軸拉伸時,肌腱彈性的動態變化以及各方向剪切波波速的改變。模擬結果顯示當肌腱承受0—3 N沿長軸方向拉力時,正常肌腱模擬波速從15.9 m/s增加至23.61 m/s,病變肌腱模擬波速則從14.26 m/s增加到16.43 m/s,亦即模擬剪切波波速隨施加拉力變化的趨勢與離體肌腱實驗結果相同,並且在較高拉力時,模擬波速的數值量級與離體肌腱實驗結果相當接近。這些結果表示適當合併橫向等向性與超彈性之力學模型可用於解釋並評估肌腱在受力下之彈性變化。總言之,我們利用有限元素分析來解釋由剪切波彈性影像的量測到的肌腱應變硬化行為,並應用此模型研究受到不同應力時,縱橫波波速變化,此結果有助於臨床上運用剪切波彈性影像定量評估肌腱傷害並追蹤復原程度。
zh_TW
dc.description.abstractThe function of tendon is to transmit the energy generated by muscles to the bone to help body movement. Tendons play a key role to regulate the force output by releasing or storing the energy in order to present from avoid taking damages. These functionalities depends on its proper tensile stiffness, i.e., the Young's modulus E of the tendon along the stretching direction of the tendon. Tendon injuries areoften result from an over-use disease, which and isare closely related to the mechanical loading imposed on the tendon during physical activity. Therefore, to study the changes of tendons stiffness with respect to various external loads will help us distinguish between normal and pathological state of tendon and track the effectiveness of treatment. In recent years, the ultrasound-based shear wave elasticity imaging has been widely used to quantify tissue elasticity. Especially in the isotropic, homogeneous and linearly elastic medium, the Young’s modulus can be approximately derived from shear modulus. In our previous ex vivo experiments of SWEI and tensile test, we clearly demonstrated both the shear wave velocities and tensile moduli of the normal/injured tendons increased as the pre-stretches increased. When the tendons were preloaded from 0 to 3N, the tensile moduli of the samples increased from 2.69 to 13.78 MPa, while the mean velocities of shear waves propagating along the longitudinal axis of the tendons increased from 7.29 to 21.40 m/s, Likewise, the tensile moduli in the injured tendons increased from 1.43 to 8.5 MPa as the preloads increased, while the mean velocities of shear waves propagating increased from 6.01 to 17.74 m/s. However, the Young’s modulus derived from shear wave velocities (i.e. E=3ρ(v_s)^2) cannot’t be coincided with the Young’s modulus measured by uniaxial tensile test. In other words, there are few quantitative models available to interpret the SWEI results measured in tendons due to their complex architecture and nonlinear mechanical behaviors. In addition, if we use the transverse isotropic model to characterize the mechanical properties of tendon, we need to measure five elastic constants, C_11, C_13, C_33,C_44 and C_66. These constants can be obtained by measuring the longitudinal and shear wave velocities propagating through tendons. However, in practical use, it is difficult to measure these constants. In order to assist us in building elasticity imaging of tendon, in this study, we used the transverse isotropic model and hyperelastic model to describe the fiber orientation and strain-stiffening behaviors of tendons. A transverse isotropic hyperelastic model using ABAQUS was employed and shear wave propagation was simulated in the modeled tendons when they were pre-stretched by loads varying from 0 to 3 N. Our preliminary results successfully recapitulated the trend of changes of shear wave velocities with respect to different pre-stretches observed in SWEI. The simulated velocity of shear waves propagating along the longitudinal axis of the control tendons increased from 15.9 to 23.61 m/s. On the other hand, the simulated velocity of shear waves propagating along the longitudinal axis of the injured tendons increased from 14.26 to 16.43 m/s. In short, the simulated velocities with respect to various loads in this model agreed well with that measured in ex vivo experiments, especially in the higher stressed level. These results show that merging transverse isotropic model and hyperelastic model appropriately can be used to interpret the changes of elasticity when tendons subjected to loads. Our work provides a quantitative basis to explain the strain-stiffening behaviors of tendons measured by SWEI and highlights the potential of applying SWEI to quantitatively assess mechanical dysfunction of injured tendons.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:11:37Z (GMT). No. of bitstreams: 1
ntu-103-R01945029-1.pdf: 6720820 bytes, checksum: 291bbdb7b50bb4ef859451dd2907fdef (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 1
中文摘要 2
ABSTRACT 4
CONTENTS 6
LIST OF FIGURES 9
LIST OF TABLES 12
Chapter 1 Introduction 14
1.1 Background study 14
1.2 Goal and motivation 18
Chapter 2 Ultrasound elastography 19
2.1 Medical ultrasound imaging 19
2.2 Shear wave elasticity imaging (SWEI) 19
2.2.1 Mechanical wave type 20
2.2.2 Acoustic radiation force 22
2.2.3 Time of flight algorithm 22
2.2.4 Elasticity estimation 23
2.3 Stiffness characterization of the normal and collagenase-damaged tendon using SWEI 24
2.3.1 Tangent modulus measurement by isolated tensile testing method 25
2.3.2 Shear wave velocities measurement using SWEI 27
2.3.3 Collagenase-induced injured tendon 28
Chapter 3 Finite element method and ABAQUS 30
3.1 Implicit method for solving nodal displacement 30
3.2 Explicit method for stress wave propagation 33
3.2.1 Time increment 35
3.2.2 Mass scaling 36
3.2.3 Reduction of wave reflected from boundaries 37
3.3 Theoretical material models 38
3.3.1 Isotropic elastic model 38
3.3.2 Transverse isotropic model 40
3.3.3 Hyperelastic model 43
3.4 Guvrich’s method 44
Chapter 4 Result and Discussion 45
4.1 Modeling the shear wave through an isotropic elastic medium 45
4.1.1 The model with infinite boundary element 49
4.2 Modeling tendon with hyperelastic material property 53
4.2.1 Tendon model with hyperelastic material 54
4.2.2 Results of simulated velocities in hyperelastic model 61
4.3 Modeling tendon with hyperelastic and transverse isotropic material properties 67
4.3.1 Elastic constants of transverse isotropic material 68
4.3.2 Tensile test data used in hyperelastic model 70
4.3.3 Tendon model with hyperelastic and transverse isotropic material 73
4.3.4 Results and discussion of simulated velocities in hyperelastic and transverse isotropic model 77
Chapter 5 Conclusion and Future work 82
5.1 Conclusion 82
5.2 Future work 82
REFERENCES 84
dc.language.isoen
dc.title使用有限元素分析模擬肌腱的應變硬化性質與彈性影像的結果之比較zh_TW
dc.titleFinite element analysis of strain-stiffening behaviors of tendons:Compared with shear wave elasticity imagingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor李百祺(Pai-Chi Li)
dc.contributor.oralexamcommittee陳文斌(Weng-Pin Chen),施文彬(Wen-Pin Shih)
dc.subject.keyword彈性影像,肌腱,剪切波,ABAQUS,數值模擬,zh_TW
dc.subject.keywordElasticity imaging,tendon,shear wave,ABAQUS,numerical modeling,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
6.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved