Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55933
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor邱智賢,吳兩新
dc.contributor.author"YU-KAI, HUANG"en
dc.contributor.author黃裕鍇zh_TW
dc.date.accessioned2021-06-16T05:11:06Z-
dc.date.available2017-12-31
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citationAkkaoui, M., Cohen, I., Esnous, C., Lenoir, V., Sournac, M., Girard, J., and Prip-Buus, C. (2009). Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids. The Biochemical Journal 420, 429-438.
Altamirano, J., and Bataller, R. (2011). Alcoholic liver disease: pathogenesis and new targets for therapy. Nature Reviews Gastroenterology & Hepatology 8, 491-501.
Amacher, D.E., and Chalasani, N. (2014). Drug-induced hepatic steatosis. Seminars in Liver Disease 34, 205-214.
Araya, J., Rodrigo, R., Videla, L.A., Thielemann, L., Orellana, M., Pettinelli, P., and Poniachik, J. (2004). Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clinical Science 106, 635-643.
Arias, I., Wolkoff, A., Boyer, J., Shafritz, D., Fausto, N., Alter, H., and Cohen, D. (2009). The Liver: Biology and Pathobiology (Wiley).
Asrih, M., and Jornayvaz, F.R. (2013). Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. The Journal of Endocrinology 218, R25-36.
Asselah, T., Rubbia-Brandt, L., Marcellin, P., and Negro, F. (2006). Steatosis in chronic hepatitis C: why does it really matter? Gut 55, 123-130.
Azzout, B., Bois-Joyeux, B., Chanez, M., and Peret, J. (1987). Development of gluconeogenesis from various precursors in isolated rat hepatocytes during starvation or after feeding a high protein, carbohydrate-free diet. The Journal of Nutrition 117, 164-169.
Baker, H., Frank, O., and DeAngelis, B. (1987). Plasma vitamin B12 titres as indicators of disease severity and mortality of patients with alcoholic hepatitis. Alcohol and Alcoholism 22, 1-5.
Bataller, R., and Brenner, D.A. (2005). Liver fibrosis. The Journal of Clinical Investigation 115, 209-218.
Bauvois, B. (2012). New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochimica et Biophysica Acta 1825, 29-36.
Bechmann, L.P., Hannivoort, R.A., Gerken, G., Hotamisligil, G.S., Trauner, M., and Canbay, A. (2012). The interaction of hepatic lipid and glucose metabolism in liver diseases. Journal of Hepatology 56, 952-964.
Bernard, S., Touzet, S., Personne, I., Lapras, V., Bondon, P.J., Berthezene, F., and Moulin, P. (2000). Association between microsomal triglyceride transfer protein gene polymorphism and the biological features of liver steatosis in patients with type II diabetes. Diabetologia 43, 995-999.
Boden, G., Chen, X., Capulong, E., and Mozzoli, M. (2001). Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 50, 810-816.
Boltjes, A., Movita, D., Boonstra, A., and Woltman, A.M. (2014). The role of Kupffer cells in hepatitis B and hepatitis C virus infections. Journal of Hepatology.
Bradbury, M.W., and Berk, P.D. (2004). Lipid metabolism in hepatic steatosis. Clinics in Liver Disease 8, 639-671, xi.
Browning, J.D., and Horton, J.D. (2004). Molecular mediators of hepatic steatosis and liver injury. The Journal of Clinical Investigation 114, 147-152.
Brule, S., Charnaux, N., Sutton, A., Ledoux, D., Chaigneau, T., Saffar, L., and Gattegno, L. (2006). The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16, 488-501.
Cardoso, A.R., Kakimoto, P.A., and Kowaltowski, A.J. (2013). Diet-sensitive sources of reactive oxygen species in liver mitochondria: role of very long chain acyl-CoA dehydrogenases. PloS One 8, 77-88.
Cha, H., Kopetzki, E., Huber, R., Lanzendorfer, M., and Brandstetter, H. (2002). Structural basis of the adaptive molecular recognition by MMP9. Journal of Molecular Biology 320, 1065-1079.
Charlton-Menys, V., and Durrington, P.N. (2008). Human cholesterol metabolism and therapeutic molecules. Experimental Physiology 93, 27-42.
Cheung, O., and Sanyal, A.J. (2008). Abnormalities of lipid metabolism in nonalcoholic fatty liver disease. Seminars in Liver Disease 28, 351-359.
Chun, T.H., Hotary, K.B., Sabeh, F., Saltiel, A.R., Allen, E.D., and Weiss, S.J. (2006). A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577-591.
Chun, T.H., Inoue, M., Morisaki, H., Yamanaka, I., Miyamoto, Y., Okamura, T., Sato-Kusubata, K., and Weiss, S.J. (2010). Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes 59, 2484-2494.
Chung, T.W., Moon, S.K., Lee, Y.C., Kim, J.G., Ko, J.H., and Kim, C.H. (2002). Enhanced expression of matrix metalloproteinase-9 by hepatitis B virus infection in liver cells. Archives of Biochemistry and Biophysics 408, 147-154.
Ciudad, C.J., Carabaza, A., and Guinovart, J.J. (1986). Glucose 6-phosphate plays a central role in the activation of glycogen synthase by glucose in hepatocytes. Biochemical and Biophysical Research Communications 141, 1195-1200.
Clark, S.A., Angus, H.B., Cook, H.B., George, P.M., Oxner, R.B., and Fraser, R. (1988). Defenestration of hepatic sinusoids as a cause of hyperlipoproteinaemia in alcoholics. Lancet 2, 1225-1227.
Clement, S., Pascarella, S., and Negro, F. (2009). Hepatitis C virus infection: molecular pathways to steatosis, insulin resistance and oxidative stress. Viruses 1, 126-143.
Cohen, P., Miyazaki, M., Socci, N.D., Hagge-Greenberg, A., Liedtke, W., Soukas, A.A., Sharma, R., Hudgins, L.C., Ntambi, J.M., and Friedman, J.M. (2002). Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297, 240-243.
Coleman, R.A., and Lee, D.P. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research 43, 134-176.
Consolo, M., Amoroso, A., Spandidos, D.A., and Mazzarino, M.C. (2009). Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease. International Journal of Molecular Medicine 24, 143-152.
Cooper, A.D. (1997). Hepatic uptake of chylomicron remnants. Journal of Lipid Research 38, 2173-2192.
Cori, G.T., and Cori, C.F. (1952). Glucose-6-phosphatase of the liver in glycogen storage disease. The Journal of Biological Chemistry 199, 661-667.
Cox, K.B., Hamm, D.A., Millington, D.S., Matern, D., Vockley, J., Rinaldo, P., Pinkert, C.A., Rhead, W.J., Lindsey, J.R., and Wood, P.A. (2001). Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Human Molecular Genetics 10, 2069-2077.
D'Amico, F., Consolo, M., Amoroso, A., Skarmoutsou, E., Mauceri, B., Stivala, F., Malaponte, G., Bertino, G., Neri, S., and Mazzarino, M.C. (2010). Liver immunolocalization and plasma levels of MMP-9 in non-alcoholic steatohepatitis (NASH) and hepatitis C infection. Acta Histochemica 112, 474-481.
Deng, Y., Foley, E.M., Gonzales, J.C., Gordts, P.L., Li, Y., and Esko, J.D. (2012). Shedding of syndecan-1 from human hepatocytes alters very low density lipoprotein clearance. Hepatology 55, 277-286.
Dentin, R., Denechaud, P.D., Benhamed, F., Girard, J., and Postic, C. (2006). Hepatic gene regulation by glucose and polyunsaturated fatty acids: a role for ChREBP. The Journal of Nutrition 136, 1145-1149.
Di Filippo, M., Moulin, P., Roy, P., Elisabeth Samson-Bouma, M., Collardeau-Frachon, S., Chebel-Dumont, S., Peretti, N., Dumortier, J., Zoulim, F., Fontanges, T., et al. (2014). Hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia due to homozygous MTTP and APOB mutations. Journal of Hepatology.
Donnelly, K.L., Smith, C.I., Schwarzenberg, S.J., Jessurun, J., Boldt, M.D., and Parks, E.J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. The Journal of Clinical Investigation 115, 1343-1351.
Dufour, A., Sampson, N.S., Li, J., Kuscu, C., Rizzo, R.C., Deleon, J.L., Zhi, J., Jaber, N., Liu, E., Zucker, S., et al. (2011). Small-molecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase-9. Cancer Research 71, 4977-4988.
Dufour, A., Sampson, N.S., Zucker, S., and Cao, J. (2008). Role of the hemopexin domain of matrix metalloproteinases in cell migration. Journal of Cellular Physiology 217, 643-651.
Dufour, A., Zucker, S., Sampson, N.S., Kuscu, C., and Cao, J. (2010). Role of matrix metalloproteinase-9 dimers in cell migration: design of inhibitory peptides. The Journal of Biological Chemistry 285, 35944-35956.
Dwivedi, A., Slater, S.C., and George, S.J. (2009). MMP-9 and -12 cause N-cadherin shedding and thereby beta-catenin signalling and vascular smooth muscle cell proliferation. Cardiovascular Research 81, 178-186.
Enjoji, M., Yasutake, K., Kohjima, M., and Nakamuta, M. (2012). Nutrition and nonalcoholic Fatty liver disease: the significance of cholesterol. International Journal of Hepatology 2012, 925807.
Fan, C.Y., Pan, J., Chu, R., Lee, D., Kluckman, K.D., Usuda, N., Singh, I., Yeldandi, A.V., Rao, M.S., Maeda, N., et al. (1996). Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. The Journal of Biological Chemistry 271, 24698-24710.
Fan, C.Y., Pan, J., Usuda, N., Yeldandi, A.V., Rao, M.S., and Reddy, J.K. (1998). Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. The Journal of Biological Chemistry 273, 15639-15645.
Fernandez-Rojo, M.A., Restall, C., Ferguson, C., Martel, N., Martin, S., Bosch, M., Kassan, A., Leong, G.M., Martin, S.D., McGee, S.L., et al. (2012). Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology 55, 1574-1584.
Fernandez Gianotti, T., Burgueno, A., Gonzales Mansilla, N., Pirola, C.J., and Sookoian, S. (2013). Fatty liver is associated with transcriptional downregulation of stearoyl-CoA desaturase and impaired protein dimerization. PloS One 8, e76912.
Ferre, P., and Foufelle, F. (2010). Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes, Obesity and Metabolism 12, 83-92.
Freedman, B.D., Lee, E.J., Park, Y., and Jameson, J.L. (2005). A dominant negative peroxisome proliferator-activated receptor-gamma knock-in mouse exhibits features of the metabolic syndrome. The Journal of Biological Chemistry 280, 17118-17125.
Gambino, R., Cassader, M., Pagano, G., Durazzo, M., and Musso, G. (2007). Polymorphism in microsomal triglyceride transfer protein: a link between liver disease and atherogenic postprandial lipid profile in NASH? Hepatology 45, 1097-1107.
Gieling, R.G., Wallace, K., and Han, Y.P. (2009). Interleukin-1 participates in the progression from liver injury to fibrosis. American journal of physiology Gastrointestinal and Liver Physiology 296, G1324-1331.
Ginsberg, H.N., Zhang, Y.L., and Hernandez-Ono, A. (2005). Regulation of plasma triglycerides in insulin resistance and diabetes. Archives of Medical Research 36, 232-240.
Gitlin, N. (2003). The liver biology and pathobiology, 4th edition. Gastroenterology 125, 1909-1910.
Goldberg, I.J., and Ginsberg, H.N. (2006). Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease. Gastroenterology 130, 1343-1346.
Gordon, D.A., Jamil, H., Sharp, D., Mullaney, D., Yao, Z., Gregg, R.E., and Wetterau, J. (1994). Secretion of apolipoprotein B-containing lipoproteins from HeLa cells is dependent on expression of the microsomal triglyceride transfer protein and is regulated by lipid availability. Proceedings of the National Academy of Sciences of the United States of America 91, 7628-7632.
Greenspan, P., and Fowler, S.D. (1985). Spectrofluorometric studies of the lipid probe, nile red. Journal of Lipid Research 26, 781-789.
Guo, Y., Cordes, K.R., Farese, R.V., Jr., and Walther, T.C. (2009). Lipid droplets at a glance. Journal of Cell Science 122, 749-752.
Hajri, T., Han, X.X., Bonen, A., and Abumrad, N.A. (2002). Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. The Journal of Clinical Investigation 109, 1381-1389.
Hakimi, P., Johnson, M.T., Yang, J., Lepage, D.F., Conlon, R.A., Kalhan, S.C., Reshef, L., Tilghman, S.M., and Hanson, R.W. (2005). Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism. Nutrition & Metabolism 2, 33.
Halilbasic, E., Claudel, T., and Trauner, M. (2013). Bile acid transporters and regulatory nuclear receptors in the liver and beyond. Journal of Hepatology 58, 155-168.
Hamano, Y., Zeisberg, M., Sugimoto, H., Lively, J.C., Maeshima, Y., Yang, C., Hynes, R.O., Werb, Z., Sudhakar, A., and Kalluri, R. (2003). Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3, 589-601.
Han, Y.P. (2006). Matrix metalloproteinases, the pros and cons, in liver fibrosis. Journal of Gastroenterology and Hepatology 21 Suppl 3, S88-91.
Hanson, R.W., and Reshef, L. (1997). Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annual Review of Biochemistry 66, 581-611.
Harano, Y., Yasui, K., Toyama, T., Nakajima, T., Mitsuyoshi, H., Mimani, M., Hirasawa, T., Itoh, Y., and Okanoue, T. (2006). Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver. Liver International 26, 613-620.
Heeren, J., Niemeier, A., Merkel, M., and Beisiegel, U. (2002). Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo. Journal of Molecular Medicine 80, 576-584.
Hellemans, K., Michalik, L., Dittie, A., Knorr, A., Rombouts, K., De Jong, J., Heirman, C., Quartier, E., Schuit, F., Wahli, W., et al. (2003). Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology 124, 184-201.
Hijona, E., Hijona, L., Arenas, J.I., and Bujanda, L. (2010). Inflammatory mediators of hepatic steatosis. Mediators of Inflammation 2010, 837419.
Horton, J.D., Bashmakov, Y., Shimomura, I., and Shimano, H. (1998). Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proceedings of the National Academy of Sciences of the United States of America 95, 5987-5992.
Hsu, W.H., Chen, T.H., Lee, B.H., Hsu, Y.W., and Pan, T.M. (2014). Monascin and ankaflavin act as natural AMPK activators with PPARalpha agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food and Chemical Toxicology 64, 94-103.
Huang, H., McIntosh, A.L., Martin, G.G., Petrescu, A.D., Landrock, K.K., Landrock, D., Kier, A.B., and Schroeder, F. (2013). Inhibitors of Fatty Acid Synthesis Induce PPAR alpha -Regulated Fatty Acid beta -Oxidative Genes: Synergistic Roles of L-FABP and Glucose. PPAR Research 2013, 865604.
Hur, W., Kim, S.W., Lee, Y.K., Choi, J.E., Hong, S.W., Song, M.J., Bae, S.H., Park, T., Um, S.J., and Yoon, S.K. (2012). Oleuropein reduces free fatty acid-induced lipogenesis via lowered extracellular signal-regulated kinase activation in hepatocytes. Nutrition Research 32, 778-786.
Hwa, J.J., Zollman, S., Warden, C.H., Taylor, B.A., Edwards, P.A., Fogelman, A.M., and Lusis, A.J. (1992). Genetic and dietary interactions in the regulation of HMG-CoA reductase gene expression. Journal of Lipid Research 33, 711-725.
Iimuro, Y., and Brenner, D.A. (2008). Matrix metalloproteinase gene delivery for liver fibrosis. Pharmaceutical Research 25, 249-258.
Imai, Y., Boyle, S., Varela, G.M., Caron, E., Yin, X., Dhir, R., Dhir, R., Graham, M.J., and Ahima, R.S. (2012). Effects of perilipin 2 antisense oligonucleotide treatment on hepatic lipid metabolism and gene expression. Physiological Genomics 44, 1125-1131.
Ip, E., Farrell, G.C., Robertson, G., Hall, P., Kirsch, R., and Leclercq, I. (2003). Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 38, 123-132.
Ishibashi, H., Nakamura, M., Komori, A., Migita, K., and Shimoda, S. (2009). Liver architecture, cell function, and disease. Seminars in Immunopathology 31, 399-409.
Itagaki, H., Shimizu, K., Morikawa, S., Ogawa, K., and Ezaki, T. (2013). Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. International Journal of Clinical and Experimental Pathology 6, 2683-2696.
Jensen-Urstad, A.P., and Semenkovich, C.F. (2012). Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochimica et Biophysica Acta 1821, 747-753.
Jiang, Z.G., Robson, S.C., and Yao, Z. (2013). Lipoprotein metabolism in nonalcoholic fatty liver disease. Journal of Biomedical Research 27, 1-13.
Julius, U. (2003). Influence of plasma free fatty acids on lipoprotein synthesis and diabetic dyslipidemia. Experimental and Clinical Endocrinology & Diabetes 111, 246-250.
Kalaany, N.Y., Gauthier, K.C., Zavacki, A.M., Mammen, P.P.A., Kitazume, T., Peterson, J.A., Horton, J.D., Garry, D.J., Bianco, A.C., and Mangelsdorf, D.J. (2005). LXRs regulate the balance between fat storage and oxidation. Cell Metabolism 1, 231-244.
Kashireddy, P.V., and Rao, M.S. (2004). Lack of peroxisome proliferator-activated receptor alpha in mice enhances methionine and choline deficient diet-induced steatohepatitis. Hepatology Research 30, 104-110.
Kerner, J., and Hoppel, C. (2000). Fatty acid import into mitochondria. Biochimica et Biophysica Acta 1486, 1-17.
Kidani, Y., and Bensinger, S.J. (2012). Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunological Reviews 249, 72-83.
Kim, K.H. (1997). Regulation of mammalian acetyl-coenzyme A carboxylase. Annual Review of Nutrition 17, 77-99.
Knauer, D.J., Majumdar, D., Fong, P.C., and Knauer, M.F. (2000). SERPIN regulation of factor XIa. The novel observation that protease nexin 1 in the presence of heparin is a more potent inhibitor of factor XIa than C1 inhibitor. The Journal of Biological Chemistry 275, 37340-37346.
Kobayashi, T., Kim, H., Liu, X., Sugiura, H., Kohyama, T., Fang, Q., Wen, F.Q., Abe, S., Wang, X., Atkinson, J.J., et al. (2014). Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. American Journal of Physiology Lung Cellular And Molecular Physiology 306, L1006-1015.
Kohjima, M., Enjoji, M., Higuchi, N., Kato, M., Kotoh, K., Yoshimoto, T., Fujino, T., Yada, M., Yada, R., Harada, N., et al. (2007). Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. International Journal of Molecular Medicine 20, 351-358.
Kolios, G., Valatas, V., and Kouroumalis, E. (2006). Role of Kupffer cells in the pathogenesis of liver disease. World Journal of Gastroenterology 12, 7413-7420.
Kuipers, F., Jong, M.C., Lin, Y., Eck, M., Havinga, R., Bloks, V., Verkade, H.J., Hofker, M.H., Moshage, H., Berkel, T.J., et al. (1997). Impaired secretion of very low density lipoprotein-triglycerides by apolipoprotein E- deficient mouse hepatocytes. The Journal of Clinical Investigation 100, 2915-2922.
Kypreos, K.E., Karagiannides, I., Fotiadou, E.H., Karavia, E.A., Brinkmeier, M.S., Giakoumi, S.M., and Tsompanidi, E.M. (2009). Mechanisms of obesity and related pathologies: role of apolipoprotein E in the development of obesity. The FEBS Journal 276, 5720-5728.
Lardone, M.C., Castillo, P., Valdevenito, R., Ebensperger, M., Ronco, A.M., Pommer, R., Piottante, A., and Castro, A. (2010). P450-aromatase activity and expression in human testicular tissues with severe spermatogenic failure. International Journal of Andrology 33, 650-660.
Lauer-Fields, J.L., Whitehead, J.K., Li, S., Hammer, R.P., Brew, K., and Fields, G.B. (2008). Selective modulation of matrix metalloproteinase 9 (MMP-9) functions via exosite inhibition. The Journal of Biological Chemistry 283, 20087-20095.
Le Lay, S., Lefrere, I., Trautwein, C., Dugail, I., and Krief, S. (2002). Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. The Journal of Biological Chemistry 277, 35625-35634.
Lee, R.G., Fu, W., Graham, M.J., Mullick, A.E., Sipe, D., Gattis, D., Bell, T.A., Booten, S., and Crooke, R.M. (2013). Comparison of the pharmacological profiles of murine antisense oligonucleotides targeting apolipoprotein B and microsomal triglyceride transfer protein. Journal of Lipid Research 54, 602-614.
Lefevre, P., and Badetti, C. (1996). Metabolism of albumin. Annales Francaises D'anesthesie et de Reanimation 15, 464-469.
Leturque, A., Brot-Laroche, E., and Le Gall, M. (2009). GLUT2 mutations, translocation, and receptor function in diet sugar managing. American Journal of Physiology Endocrinology and Metabolism 296, E985-992.
Levin, J.I., Chen, J., Du, M., Hogan, M., Kincaid, S., Nelson, F.C., Venkatesan, A.M., Wehr, T., Zask, A., DiJoseph, J., et al. (2001). The discovery of anthranilic acid-based MMP inhibitors. Part 2: SAR of the 5-position and P1(1) groups. Bioorganic & Medicinal Chemistry Letters 11, 2189-2192.
Li, T., and Chiang, J.Y. (2013). Nuclear receptors in bile acid metabolism. Drug Metabolism Reviews 45, 145-155.
Li, X., Ye, J., Zhou, L., Gu, W., Fisher, E.A., and Li, P. (2012). Opposing roles of cell death-inducing DFF45-like effector B and perilipin 2 in controlling hepatic VLDL lipidation. Journal of Lipid Research 53, 1877-1889.
Liang, G., Yang, J., Horton, J.D., Hammer, R.E., Goldstein, J.L., and Brown, M.S. (2002). Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. The Journal of Biological Chemistry 277, 9520-9528.
Lichtinghagen, R., Bahr, M.J., Wehmeier, M., Michels, D., Haberkorn, C.I., Arndt, B., Flemming, P., Manns, M.P., and Boeker, K.H. (2003). Expression and coordinated regulation of matrix metalloproteinases in chronic hepatitis C and hepatitis C virus-induced liver cirrhosis. Clinical Science 105, 373-382.
Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Jr., Ory, D.S., and Schaffer, J.E. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proceedings of the National Academy of Sciences of the United States of America 100, 3077-3082.
Liu, S., Lin, S.J., Li, G., Kim, E., Chen, Y.T., Yang, D.R., Tan, M.H., Yong, E.L., and Chang, C. (2014). Differential roles of PPARgamma vs TR4 in prostate cancer and metabolic diseases. Endocrine-related Cancer 21, R279-300.
Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., and Scott, M.P. (2012). Molecular Cell Biology (W. H. Freeman).
Lundberg, I., Nise, G., Hedenborg, G., Hogberg, M., and Vesterberg, O. (1994). Liver function tests and urinary albumin in house painters with previous heavy exposure to organic solvents. Occupational and Environmental Medicine 51, 347-353.
Mahley, R.W. (1988). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622-630.
Malhi, H., Barreyro, F.J., Isomoto, H., Bronk, S.F., and Gores, G.J. (2007). Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut 56, 1124-1131.
Malhi, H., Guicciardi, M.E., and Gores, G.J. (2010). Hepatocyte death: a clear and present danger. Physiological Reviews 90, 1165-1194.
Manon-Jensen, T., Multhaupt, H.A., and Couchman, J.R. (2013). Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains. The FEBS Journal 280, 2320-2331.
Mantuano, E., Inoue, G., Li, X., Takahashi, K., Gaultier, A., Gonias, S.L., and Campana, W.M. (2008). The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. The Journal of Neuroscience 28, 11571-11582.
Mao, J., DeMayo, F.J., Li, H., Abu-Elheiga, L., Gu, Z., Shaikenov, T.E., Kordari, P., Chirala, S.S., Heird, W.C., and Wakil, S.J. (2006). Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America 103, 8552-8557.
Mason, D.P., Kenagy, R.D., Hasenstab, D., Bowen-Pope, D.F., Seifert, R.A., Coats, S., Hawkins, S.M., and Clowes, A.W. (1999). Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circulation Research 85, 1179-1185.
Matsusue, K., Haluzik, M., Lambert, G., Yim, S.H., Gavrilova, O., Ward, J.M., Brewer, B., Jr., Reitman, M.L., and Gonzalez, F.J. (2003). Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. The Journal of Clinical Investigation 111, 737-747.
McCawley, L.J., and Matrisian, L.M. (2001). Matrix metalloproteinases: they're not just for matrix anymore! Current Opinion in Cell Biology 13, 534-540.
McMillian, M.K., Grant, E.R., Zhong, Z., Parker, J.B., Li, L., Zivin, R.A., Burczynski, M.E., and Johnson, M.D. (2001). Nile Red binding to HepG2 cells: an improved assay for in vitro studies of hepatosteatosis. In Vitro & Molecular Toxicology 14, 177-190.
Meissburger, B., Stachorski, L., Roder, E., Rudofsky, G., and Wolfrum, C. (2011). Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 54, 1468-1479.
Mensenkamp, A.R., Havekes, L.M., Romijn, J.A., and Kuipers, F. (2001). Hepatic steatosis and very low density lipoprotein secretion: the involvement of apolipoprotein E. Journal of Hepatology 35, 816-822.
Merat, S., Casanada, F., Sutphin, M., Palinski, W., and Reaven, P.D. (1999). Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet. Arteriosclerosis, Thrombosis, and Vascular Biology 19, 1223-1230.
Miquilena-Colina, M.E., Lima-Cabello, E., Sanchez-Campos, S., Garcia-Mediavilla, M.V., Fernandez-Bermejo, M., Lozano-Rodriguez, T., Vargas-Castrillon, J., Buque, X., Ochoa, B., Aspichueta, P., et al. (2011). Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 60, 1394-1402.
Mitsuyoshi, H., Yasui, K., Harano, Y., Endo, M., Tsuji, K., Minami, M., Itoh, Y., Okanoue, T., and Yoshikawa, T. (2009). Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatology Research 39, 366-373.
Mizuguchi, Y., Specht, S., Isse, K., Lunz, J., III, and Demetris, A. (2011). Biliary Epithelial Cells. In Molecular Pathology of Liver Diseases, S.P.S. Monga, ed. (Springer US), pp. 27-51.
Mohammed, F.F., and Khokha, R. (2005). Thinking outside the cell: proteases regulate hepatocyte division. Trends in Cell Biology 15, 555-563.
Monetti, M., Levin, M.C., Watt, M.J., Sajan, M.P., Marmor, S., Hubbard, B.K., Stevens, R.D., Bain, J.R., Newgard, C.B., Farese, R.V., Sr., et al. (2007). Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metabolism 6, 69-78.
Moran-Salvador, E., Lopez-Parra, M., Garcia-Alonso, V., Titos, E., Martinez-Clemente, M., Gonzalez-Periz, A., Lopez-Vicario, C., Barak, Y., Arroyo, V., and Claria, J. (2011). Role for PPARgamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB Journal 25, 2538-2550.
Motomura, W., Inoue, M., Ohtake, T., Takahashi, N., Nagamine, M., Tanno, S., Kohgo, Y., and Okumura, T. (2006). Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochemical and Biophysical Research Communications 340, 1111-1118.
Mott, J.D., and Werb, Z. (2004). Regulation of matrix biology by matrix metalloproteinases. Current Opinion in Cell Biology 16, 558-564.
Musso, G., Gambino, R., and Cassader, M. (2013). Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Progress in Lipid Research 52, 175-191.
Nagashima, S., Yagyu, H., Ohashi, K., Tazoe, F., Takahashi, M., Ohshiro, T., Bayasgalan, T., Okada, K., Sekiya, M., Osuga, J., et al. (2012). Liver-specific deletion of 3-hydroxy-3-methylglutaryl coenzyme A reductase causes hepatic steatosis and death. Arteriosclerosis, Thrombosis, and Vascular Biology 32, 1824-1831.
Neuschwander-Tetri, B.A. (2010). Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52, 774-788.
Neuschwander-Tetri, B.A. (2013). Carbohydrate intake and nonalcoholic fatty liver disease. Current Opinion in Clinical Nutrition and Metabolic Care 16, 446-452.
Nguyen, P., Leray, V., Diez, M., Serisier, S., Le Bloc'h, J., Siliart, B., and Dumon, H. (2008). Liver lipid metabolism. Journal of Animal Physiology and Animal Nutrition 92, 272-283.
Nyman, L.R., Tian, L., Hamm, D.A., Schoeb, T.R., Gower, B.A., Nagy, T.R., and Wood, P.A. (2011). Long term effects of high fat or high carbohydrate diets on glucose tolerance in mice with heterozygous carnitine palmitoyltransferase-1a (CPT-1a) deficiency: Diet influences on CPT1a deficient mice. Nutrition & Diabetes 1, e14.
Osuga, J., Yonemoto, M., Yamada, N., Shimano, H., Yagyu, H., Ohashi, K., Harada, K., Kamei, T., Yazaki, Y., and Ishibashi, S. (1998). Cholesterol lowering in low density lipoprotein receptor knockout mice overexpressing apolipoprotein E. The Journal of Clinical Investigation 102, 386-394.
Page-McCaw, A., Ewald, A.J., and Werb, Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nature reviews Molecular Cell Biology 8, 221-233.
Postic, C., Dentin, R., Denechaud, P.D., and Girard, J. (2007). ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annual Review of Nutrition 27, 179-192.
Pyper, S.R., Viswakarma, N., Yu, S., and Reddy, J.K. (2010). PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nuclear receptor Signaling 8, e002.
Ramani, V.C., Purushothaman, A., Stewart, M.D., Thompson, C.A., Vlodavsky, I., Au, J.L., and Sanderson, R.D. (2013). The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. The FEBS Journal 280, 2294-2306.
Rao, M.S., and Reddy, J.K. (2004). PPARalpha in the pathogenesis of fatty liver disease. Hepatology 40, 783-786.
Redondo-Munoz, J., Ugarte-Berzal, E., Garcia-Marco, J.A., del Cerro, M.H., Van den Steen, P.E., Opdenakker, G., Terol, M.J., and Garcia-Pardo, A. (2008). Alpha4beta1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood 112, 169-178.
Redondo-Munoz, J., Ugarte-Berzal, E., Terol, M.J., Van den Steen, P.E., Hernandez del Cerro, M., Roderfeld, M., Roeb, E., Opdenakker, G., Garcia-Marco, J.A., and Garcia-Pardo, A.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55933-
dc.description.abstract近年來,非酒精性脂肪肝病(Non-alcoholic fatty liver disease, NAFLD)已經成為主要且常見之慢性肝病。常見之非酒精性脂肪肝病包括脂質浸潤(Steatosis)以及脂性肝炎(Non-alcoholic steatohepatitis, NASH),雖目前對於NAFLD之致病機轉仍未明朗,近年已有文獻顯示,基質金屬蛋白分解脢 9(Matrix metalloproteinase 9, MMP-9可能參與其中。以往,MMP-9蛋白僅被認為具有酵素截切活性而與胞外基質(Extracellular matrix, ECM)之代謝與持恆有關;然而,最近之研究指出,MMP-9 亦可以其獨有之Hemopexin domain與細胞膜上特定受體結合併進而影響細胞行為。為了解MMP-9蛋白於NAFLD病程中所扮演之角色與其影響,同時進行了in vivo與in vitro試驗以釐清二者之關係。
在In vivo試驗中,以高脂飼糧(60%能量來自脂肪)餵飼12周齡之MMP-9基因剔除與C57BL/6野生型小鼠達15周。餵飼結束後,包含肝重比、肝切片以及肝臟三酸甘油脂定量分析之結果皆顯示MMP-9基因剔除會顯著增加肝臟油滴堆積,導致NAFLD病程更為嚴重。此外,與肝臟脂質相關調控機轉,如:脂質攝入 (Cd36, Ldlr, and Lrp1) 與脂質生合成 (Fasn and Dgat1) 皆因MMP-9基因剔除而顯著增加;更進一步地,與脂質合成相關之轉錄因子 (Pparg and Srebp1c) 亦因MMP-9基因剔除而顯著增加。此一結果證實了MMP-9基因剔除藉由改變脂質代謝途徑而使肝臟大量堆積油滴,導致NAFLD病程更為嚴重。
為分辨對於肝臟脂質代謝途徑之調控是藉由MMP-9蛋白分解ECM所間接調控或是MMP-9蛋白與受體結合所調控,共處理兩種不同MMP-9蛋白抑止劑與油酸於FL83B肝細胞株以檢驗不同抑止劑對油滴堆積之影響。結果顯示,僅只有抑制ECM分解之抑止劑I顯著地增加了油酸誘導之油滴堆積現象;與其相反,MMP-9蛋白結合受體之抑止劑II並無類似效果。
在我們的研究中,MMP-9失去酵素截切活性會改變脂質代謝途徑並顯著地增加肝臟脂質堆積導致NAFLD病程更為嚴重,這一結果提供了在治療NAFLD病程中之可能標的,然而,MMP-9蛋白與肝臟脂質代謝途徑之詳細調控機轉仍須更多試驗釐清。
zh_TW
dc.description.abstractNon-alcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease in recent years. NAFLD ranges from hepatic steatosis to non-alcoholic steatohepatitis (NASH), which can further progress into irreversible liver damages. Although the molecular mechanisms of NAFLD progression are still uncertain, recent studies suggest the matrix metalloproteinase 9 (MMP-9) is involved. In past, MMP-9 has been known as a proteinase can only degrade extracellular matrix (ECM), especially gelatin. However, recent studies reveal, MMP-9 protein can be a ligand binding to the specific receptor by its unique PEX domain to alter the cell behaviors. To study the role of MMP-9 in NAFLD, we conducted both of in vivo and in vitro experiments.
In vivo, 12-week-old C57BL/6 wild type and MMP-9 knockout mice (catalytic domain mutated) were fed with control or high fat diet (60% of energy from fat) for 15 weeks. After high fat diet challenge, the results of liver to body weight ratio, histological section and TG assay (p < .05) indicated that MMP-9 knockout would significantly aggravate the NAFLD progression. Besides, mRNA expression of genes related to hepatic lipid metabolism were analyzed by quantitative PCR. Significant upregulation of genes involved in lipid uptake (Cd36, Ldlr, and Lrp1) and lipogenesis (Fasn and Dgat1) was found in MMP-9 knockout mice (p < .05); moreover, the expression of transcription factor related to lipid anabolism (Pparg and Srebp1c) was also increased (p < .05). These data confirmed the involvement of MMP-9 in hepatic lipid metabolism and the progress of NAFLD.
To clarify the effect of MMP-9 in lipid metabolism is regulated by proteolytic domain or by PEX domain, we performed the model of oleic acid (OA) induced lipid accumulation in FL83B hepatocyte cell and co-treated with two different inhibitors in vitro. The results showed the proteolytic domain inhibition would significantly increase the level of OA induced lipid accumulation (p < .05); in contrast, PEX domain inhibition had no similar effect.
Our findings suggest that MMP-9 knockout enhances the expression of genes related to lipid accumulation to aggravate the NAFLD progression. Furthermore, this kind of regulation is proteolytic activity dependent. These results provide us novel insight into development of NAFLD therapy. However, whether MMP-9 participate in this metabolic regulation via ECM remodeling or degradation of other protein targets needs further studies to be elucidated.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:11:06Z (GMT). No. of bitstreams: 1
ntu-103-R01626004-1.pdf: 2523636 bytes, checksum: 29e9a3110380a3bb74df05dea877c7f3 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
致謝 i
摘要 ii
Abstract iv
Contents vi
List of Figures viii
List of Tables x
1. Introduction 1
2. Literature Review 2
2.1 Liver architecture 2
2.2 Liver cell composition 4
2.3 Liver function 8
2.4 Liver disease 20
2.5 Matrix metalloproteinase 9 and NAFLD 33
2.6 Matrix metalloproteinase 9, MMP-9 35
3. Material and method 42
3.1 Animal 42
3.2 High fat diet induced NAFLD 42
3.3 Genotyping, expression, and activity of MMP-9 43
3.4 Steatosis in MMP-9 knockout mice 45
3.5 Regulation pathway of steatosis 47
3.6 Regulation mechanism by MMP-9 in steatosis 48
3.7 Statistical analysis 50
4. Results 52
4.1 MMP-9 proteins can be translated but without proteolytic activity 52
4.2 High fat diet induced hepatic steatosis 53
4.3 MMP-9 knockout aggravated liver steatosis after the high fat diet challenge 55
4.4 MMP-9 knockout altered hepatic lipid metabolism 57
4.5 Regulation mechanism of MMP-9 in lipid accumulation 62
5. Discussion 65
5.1 MMP-9 proteins can be translated but without proteolytic activity 65
5.2 MMP-9 knockout alters hepatic lipid metabolism to aggravate liver steatosis 65
5.3 Catalytic domain of MMP-9 mediated the lipid accumulation in vitro 75
6. Conclusion 79
7. References 98
Appendix A List of Abbreviations 133
Appendix B List of Primers 135
dc.language.isoen
dc.subject酵素截切活性zh_TW
dc.subject基質金屬蛋白分解?9zh_TW
dc.subject油滴堆積zh_TW
dc.subject脂質浸潤zh_TW
dc.subject非酒精性脂肪肝病zh_TW
dc.subjectNAFLDen
dc.subjectSteatosisen
dc.subjectLipid accumulationen
dc.subjectMMP-9en
dc.subjectProteolytic activityen
dc.title基質金屬蛋白分解脢9在非酒精性脂肪肝病中所扮演之角色zh_TW
dc.titleThe Role of MMP-9 in Non-alcoholic Fatty Liver Diseaseen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳億乘,梁耀仁,徐慶琳
dc.subject.keyword非酒精性脂肪肝病,脂質浸潤,油滴堆積,基質金屬蛋白分解?9,酵素截切活性,zh_TW
dc.subject.keywordNAFLD,Steatosis,Lipid accumulation,MMP-9,Proteolytic activity,en
dc.relation.page136
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
Appears in Collections:動物科學技術學系

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
2.46 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved