Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55929
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫
dc.contributor.authorFu-Hui Shenen
dc.contributor.author沈芙慧zh_TW
dc.date.accessioned2021-06-16T05:11:01Z-
dc.date.available2020-07-15
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citationReference
1. Allison MA, Hiatt WR, Hirsch AT, Coll JR, Criqui MH. 2008. A high ankle-brachial index is associated with increased cardiovascular disease morbidity and lower quality of life. Journal of the American College of Cardiology 51:1292-1298.
2. Araujo JA, Nel AE. 2009. Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Part Fibre Toxicol 6:24-42.
3. Barnett AG, Williams GM, Schwartz J, Best TL, Neller AH, Petroeschevsky AL, et al. 2006. The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in australian and new zealand cities. Environmental health perspectives 114:1018.
4. Beelen R, Hoek G, van Den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ, et al. 2008. Long-term effects of traffic-related air pollution on mortality in a dutch cohort (nlcs-air study). Environ Health Perspect 116:196-202.
5. Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al. 2013. Development of no< sub> 2</sub> and no< sub> x</sub> land use regression models for estimating air pollution exposure in 36 study areas in europe–the escape project. Atmospheric Environment 72:10-23.
6. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, et al. 2014. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 european cohorts within the multicentre escape project. The Lancet 383:785-795.
7. Briet M, Collin C, Laurent S, Tan A, Azizi M, Agharazii M, et al. 2007. Endothelial function and chronic exposure to air pollution in normal male subjects. Hypertension 50:970-976.
8. Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, et al. 1997. Mapping urban air pollution using gis: A regression-based approach. International Journal of Geographical Information Science 11:699-718.
9. Brook R. 2008. Cardiovascular effects of air pollution. Clinical Science 115:175-187.
10. Brook RD, Brook JR, Urch B, Vincent R, Rajagopalan S, Silverman F. 2002. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 105:1534-1536.
11. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al. 2004. Air pollution and cardiovascular disease a statement for healthcare professionals from the expert panel on population and prevention science of the american heart association. Circulation 109:2655-2671.
12. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. 2010. Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the american heart association. Circulation 121:2331-2378.
13. Brook RD, Bard RL, Morishita M, Dvonch JT, Wang L, Yang H, et al. 2014. Hemodynamic, autonomic, and vascular effects of exposure to coarse particulate matter air pollution from a rural location. Environ Health Perspect.
14. Chang S-C, Lee C-T. 2008. Evaluation of the temporal variations of air quality in taipei city, taiwan, from 1994 to 2003. Journal of environmental management 86:627-635.
15. Chen C-C, Wu C-F, Yu H-L, Chan C-C, Cheng T-J. 2012. Spatiotemporal modeling with temporal-invariant variogram subgroups to estimate fine particulate matter PM 2.5 concentrations. Atmospheric Environment 54:1-8.
16. Chen H, Goldberg MS, Burnett RT, Jerrett M, Wheeler AJ, Villeneuve PJ. 2013. Long-term exposure to traffic-related air pollution and cardiovascular mortality. Epidemiology 24:35-43.
17. Cheng T-J, Hwang J-S, Wang P-Y, Tsai C-F, Chen C-Y, Lin S-H, et al. 2003. Effects of concentrated ambient particles on heart rate and blood pressure in pulmonary hypertensive rats. Environmental health perspectives 111:147.
18. Chuang K-J, Chan C-C, Su T-C, Lee C-T, Tang C-S. 2007. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. American journal of respiratory and critical care medicine 176:370-376.
19. Dominici F, Peng RD, Barr CD, Bell ML. 2010. Protecting human health from air pollution: Shifting from a single-pollutant to a multi-pollutant approach. Epidemiology (Cambridge, Mass) 21:187.
20. Dons E, Van Poppel M, Kochan B, Wets G, Int Panis L. 2013. Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon. Atmospheric Environment 74:237-246.
21. Gan WQ, Davies HW, Koehoorn M, Brauer M. 2012. Association of long-term exposure to community noise and traffic-related air pollution with coronary heart disease mortality. American journal of epidemiology 175:898-906.
22. Gehring U, Heinrich J, Kramer U, Grote V, Hochadel M, Sugiri D, et al. 2006. Long-term exposure to ambient air pollution and cardiopulmonary mortality in women. Epidemiology 17:545-551.
23. Gehring U, Gruzieva O, Agius RM, Beelen R, Custovic A, Cyrys J, et al. 2013. Air pollution exposure and lung function in children: The escape project. Environ Health Perspect 121:1357-1364.
24. Gilliland F, Avol E, Kinney P, Jerrett M, Dvonch T, Lurmann F, et al. 2005. Air pollution exposure assessment for epidemiologic studies of pregnant women and children: Lessons learned from the centers for children's environmental health and disease prevention research. Environmental health perspectives:1447-1454.
25. Henderson SB, Beckerman B, Jerrett M, Brauer M. 2007. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental science & technology 41:2422-2428.
26. Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA. 2002. Association between mortality and indicators of traffic-related air pollution in the netherlands: A cohort study. The lancet 360:1203-1209.
27. Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, et al. 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment 42:7561-7578.
28. Jerrett M, Burnett RT, Kanaroglou P, Eyles J, Finkelstein N, Giovis C, et al. 2001. A gis-environmental justice analysis of particulate air pollution in hamilton, canada. Environment and Planning A 33:955-974.
29. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, et al. 2004. A review and evaluation of intraurban air pollution exposure models. Journal of Exposure Science and Environmental Epidemiology 15:185-204.
30. Johnson M, MacNeill M, Grgicak-Mannion A, Nethery E, Xu X, Dales R, et al. 2013. Development of temporally refined land-use regression models predicting daily household-level air pollution in a panel study of lung function among asthmatic children. Journal of Exposure Science and Environmental Epidemiology 23:259-267.
31. Kunzli N, Perez L, von Klot S, Baldassarre D, Bauer M, Basagana X, et al. 2011. Investigating air pollution and atherosclerosis in humans: Concepts and outlook. Progress in cardiovascular diseases 53:334-343.
32. Katsouyanni K, Zmirou D, Spix C, Sunyer J, Schouten J, Ponka A, et al. 1995. Short-term effects of air pollution on health: A european approach using epidemiological time-series data. The aphea project: Background, objectives, design. European Respiratory Journal 8:1030-1038.
33. Koenig W, Khuseyinova N, Baumert J, Thorand B, Loewel H, Chambless L, et al. 2006. Increased concentrations of c-reactive protein and il-6 but not il-18 are independently associated with incident coronary events in middle-aged men and women results from the monica/kora augsburg case–cohort study, 1984–2002. Arteriosclerosis, thrombosis, and vascular biology 26:2745-2751.
34. Lee J-H, Wu C-F, Hoek G, de Hoogh K, Beelen R, Brunekreef B, et al. 2014. Land use regression models for estimating individual no< sub> x</sub> and no< sub> 2</sub> exposures in a metropolis with a high density of traffic roads and population. Science of The Total Environment 472:1163-1171.
35. Lenters V, Uiterwaal CS, Beelen R, Bots ML, Fischer P, Brunekreef B, et al. 2010. Long-term exposure to air pollution and vascular damage in young adults. Epidemiology 21:512-520.
36. Lundback M, Mills NL, Lucking A, Barath S, Donaldson K, Newby DE, et al. 2009. Experimental exposure to diesel exhaust increases arterial stiffness in man. Part Fibre Toxicol 6:928.
37. Mann JK, Tager IB, Lurmann F, Segal M, Quesenberry Jr CP, Lugg MM, et al. 2002. Air pollution and hospital admissions for ischemic heart disease in persons with congestive heart failure or arrhythmia. Environmental health perspectives 110:1247.
38. Maynard D, Coull BA, Gryparis A, Schwartz J. 2007. Mortality risk associated with short-term exposure to traffic particles and sulfates. Environmental Health Perspectives:751-755.
39. McDermott MM, Liu K, Criqui MH, Ruth K, Goff D, Saad MF, et al. 2005. Ankle-brachial index and subclinical cardiac and carotid disease the multi-ethnic study of atherosclerosis. American journal of epidemiology 162:33-41.
40. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. 2007. Long-term exposure to air pollution and incidence of cardiovascular events in women. New England Journal of Medicine 356:447-458.
41. Mills NL, Tornqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, et al. 2005. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 112:3930-3936.
42. Mills NL, Tornqvist H, Gonzalez MC, Vink E, Robinson SD, Soderberg S, et al. 2007. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. New England Journal of Medicine 357:1075-1082.
43. Nethery E, Teschke K, Brauer M. 2008. Predicting personal exposure of pregnant women to traffic-related air pollutants. Science of the total environment 395:11-22.
44. Peel JL, Tolbert PE, Klein M, Metzger KB, Flanders WD, Todd K, et al. 2005. Ambient air pollution and respiratory emergency department visits. Epidemiology 16:164-174.
45. Perticone F, Ceravolo R, Pujia A, Ventura G, Iacopino S, Scozzafava A, et al. 2001. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 104:191-196.
46. Peters A, Dockery DW, Muller JE, Mittleman MA. 2001. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103:2810-2815.
47. Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, et al. 2004. Cardiovascular mortality and long-term exposure to particulate air pollution epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71-77.
48. Pope CA, Muhlestein JB, May HT, Renlund DG, Anderson JL, Horne BD. 2006. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation 114:2443-2448.
49. Pope III CA, Verrier RL, Lovett EG, Larson AC, Raizenne ME, Kanner RE, et al. 1999. Heart rate variability associated with particulate air pollution. American heart journal 138:890-899.
50. Potier L, Abi Khalil C, Mohammedi K, Roussel R. 2011. Use and utility of ankle brachial index in patients with diabetes. European Journal of Vascular and Endovascular Surgery 41:110-116.
51. Ruckerl R, Phipps RP, Schneider A, Frampton M, Cyrys J, Oberdorster G, et al. 2007. Ultrafine particles and platelet activation in patients with coronary heart disease—results from a prospective panel study. Part Fibre Toxicol 4:1743-8977.
52. Ruckerl R, Schneider A, Breitner S, Cyrys J, Peters A. 2011. Health effects of particulate air pollution: A review of epidemiological evidence. Inhalation toxicology 23:555-592.
53. Raaschou-Nielsen O, Andersen ZJ, Jensen SS, Ketzel M, Sorensen M, Hansen J, et al. 2012. Traffic air pollution and mortality from cardiovascular disease and all causes: A danish cohort study. Environ Health 11:60.
54. Ridker PM, Wilson PW, Grundy SM. 2004. Should c-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation 109:2818-2825.
55. Rivera M, Basagana X, Aguilera I, Foraster M, Agis D, Groot Ed, et al. 2012. Association between long-term exposure to traffic-related air pollution and subclinical atherosclerosis: The regicor study. c Environmental Health Perspectives, 2012, vol 121, p 223-230.
56. Rosenlund M, Picciotto S, Forastiere F, Stafoggia M, Perucci CA. 2008. Traffic-related air pollution in relation to incidence and prognosis of coronary heart disease. Epidemiology 19:121-128.
57. Ross Z, Jerrett M, Ito K, Tempalski B, Thurston GD. 2007. A land use regression for predicting fine particulate matter concentrations in the new york city region. Atmospheric Environment 41:2255-2269.
58. Ryan PH, LeMasters GK. 2007. A review of land-use regression models for characterizing intraurban air pollution exposure. Inhalation toxicology 19:127-133.
59. Schulz H, Harder V, Ibald-Mulli A, Khandoga A, Koenig W, Krombach F, et al. 2005. Cardiovascular effects of fine and ultrafine particles. Journal of aerosol medicine 18:1-22.
60. Schwartz J. 2004. The effects of particulate air pollution on daily deaths: A multi-city case crossover analysis. Occupational and environmental medicine 61:956-961.
61. Seaton A, Soutar A, Crawford V, Elton R, McNerlan S, Cherrie J, et al. 1999. Particulate air pollution and the blood. Thorax 54:1027-1032.
62. Slama R, Morgenstern V, Cyrys J, Zutavern A, Herbarth O, Wichmann H-E, et al. 2007. Traffic-related atmospheric pollutants levels during pregnancy and offspring's term birth weight: A study relying on a land-use regression exposure model. Environmental Health Perspectives:1283-1292.
63. Steinvil A, Kordova-Biezuner L, Shapira I, Berliner S, Rogowski O. 2008. Short-term exposure to air pollution and inflammation-sensitive biomarkers. Environmental research 106:51-61.
64. Sugawara J, Hayashi K, Yokoi T, Cortez-Cooper M, DeVan A, Anton M, et al. 2005. Brachial–ankle pulse wave velocity: An index of central arterial stiffness? Journal of human hypertension 19:401-406.
65. Suominen V, Rantanen T, Venermo M, Saarinen J, Salenius J. 2008. Prevalence and risk factors of pad among patients with elevated abi. European Journal of Vascular and Endovascular Surgery 35:709-714.
66. Tanaka H, Munakata M, Kawano Y, Ohishi M, Shoji T, Sugawara J, et al. 2009. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. Journal of hypertension 27:2022-2027.
67. Törnqvist Hk, Mills NL, Gonzalez M, Miller MR, Robinson SD, Megson IL, et al. 2007. Persistent endothelial dysfunction in humans after diesel exhaust inhalation. American journal of respiratory and critical care medicine 176:395-400.
68. Tsai D-H, Wang J-L, Chuang K-J, Chan C-C. 2010. Traffic-related air pollution and cardiovascular mortality in central taiwan. Science of the total environment 408:1818-1823.
69. Xu Y, Li J, Luo Y, Wu Y, Zheng L, Yu J, et al. 2007. The association between ankle-brachial index and cardiovascular or all-cause mortality in metabolic syndrome of elderly chinese. Hypertension Research 30:613-619.
70. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, et al. 2002. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertension Research 25:359-364.
71. Yu H-L, Wang C-H, Liu M-C, Kuo Y-M. 2011. Estimation of fine particulate matter in taipei using landuse regression and bayesian maximum entropy methods. International journal of environmental research and public health 8:2153-2169.
72. Zanobetti A, Schwartz J. 2009. The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environmental Health Perspectives 117:898.
73. Zhao J, Gao Z, Tian Z, Xie Y, Xin F, Jiang R, et al. 2013. The biological effects of individual-level pm2. 5 exposure on systemic immunity and inflammatory response in traffic policemen. Occupational and environmental medicine:oemed-2012-100864.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55929-
dc.description.abstract前言:
空氣汙染物已在許多研究中證實與心血管疾病的發生與惡化有關,尤其是交通汙染源所產生的汙染物(例如:細懸浮微粒與二氧化氮)。過去進行短期效應的暴露評估時,大多使用空氣品質監測站數據作為居民空氣汙染物暴露程度的指標。本研究在臺北地區發展短期的土地利用回歸模式,探討土地利用與交通排放對於二氧化氮與細懸浮微粒濃度空間分布的貢獻,並將之應用於急性心血管效應與不同暴露評估方法比較。
方法:
本研究於2013年在臺北地區選擇了117位在某金融大樓工作的員工,並在其辦公地點的大樓進行心血管的健康檢查與室內空氣品質監測。在空氣汙染暴露的推估方面使用了三種不同的暴露評估設計:(1)使用土地利用模式去預測受試者住家的室外空氣品質(2)利用土地利用模式結合辦公大樓的室內空氣品質監測(3)最近測站法。在心血管檢查的部分,進行了一般檢查、血樣抽樣以及非侵入性的血管彈性量測。最後我們所選取的心血管效應指標為: 臂踝脈波傳播速率(baPWV) 、踝肱指數(ABI) 以及高敏感度C-反應蛋白(hsCRP)。
結果:
本研究在暴露評估上的方法比較上,顯示當土地利用模式結合辦公大樓的室內空氣品質監測,相較於單純用土地利用模式,對於心血管效應指標的探討有著更顯著的結果,表示室內空氣品質監測對於暴露評估上的應用,有一定的重要性。在交通汙染物與急性心血管效應的關聯上,我們發現PM2.5 以及 NO2和 baPWV有顯著的正相關,而與ABI並沒有顯著的相關。在與hsCRP的關係中,僅發現NO2 與其有顯著的正相關。
結論:
本研究在臺北地區建立了短期的細懸浮微粒與二氧化氮的土地利用模式,進行交通產生的汙染物與急性心血管效應的探討。並在此研究中反映出交通汙染源產生的汙染物會造成急性心血管效應的惡化。
zh_TW
dc.description.abstractBackground:
The study was designed to combine air quality monitoring data with land use data to build land use regression (LUR) models in Taipei Metropolis to predict individualized traffic-related air pollutants exposure levels and linked with cardiovascular endpoints to discuss the association between short-term traffic-related air pollution and acute cardiovascular effects.
Method:
We selected 117 subjects working at a bank to have health examination in February, June, and September in 2013. The health examinations included general medical examination and cardiovascular screening. Additionally, we monitored air quality at the subjects’ workplaces over the period of health examination. We also collected information on the subjects’ home addresses and time-activity patterns to predict individualized PM2.5 and NO2 exposures at the subjects’ home addresses by land use regression models. Three exposure assessment methods were developed to represent personal exposure: (1) LUR models, (2) LUR models combine with indoor air monitoring, and (3) Nearest station. For cardiovascular markers, we used the inflammation maker (High-sensitivity CRP, hsCRP) and the markers for the arterial stiffness (baPWV and ABI) as our health endpoints.
Results:
With regard to the different exposure assessment methods, we found that using LUR models combining with indoor air monitoring data had a better explanation on the relationship with acute cardiovascular effects. With regard to the association between traffic-related air pollutants and cardiovascular endpoints, we found that both PM2.5 and NO2 was significantly associated with baPWV, and NO2 was significantly associated with hsCRP. However, ABI was not found to be associated with traffic-related air pollutants.
Conclusion:
We were able to develop land use regression models by combining air-quality monitoring data with geographic variables to predict personal exposure in Taipei Metropolis. These LUR models were applied to link with the subjects’ health data. It was found that acute cardiovascular effects were significantly associated with short-term traffic-related air pollution.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:11:01Z (GMT). No. of bitstreams: 1
ntu-103-R01841014-1.pdf: 6840984 bytes, checksum: 9901ec8e743e805cd5cb8172ae540cb0 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContent
口試委員會審定書 I
誌謝 II
摘要 IV
ABSTRACT V
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 LAND USE REGRESSION 3
1.3 ACUTE CARDIOVASCULAR EFFECTS 5
1.4 THE EXPOSURE ASSIGNMENTS WITH AIR POLLUTANT LINK WITH ACUTE CARDIOVASCULAR EFFECTS 6
1.5 OBJECTIVE 7
CHAPTER 2 MATERIALS AND METHODS 9
2.1 STUDY DESIGN 9
2.2 STUDY AREA 10
2.3 HEALTH DATA COLLECTION 10
2.4 CONFOUNDER VARIABLES 11
2.5 ENVIRONMENTAL MONITORING 12
2.5.1 Indoor PM2.5 measurement 12
2.5.2 Indoor NO2 measurement 13
2.5.3 Time-activity pattern questionnaire 13
2.6 LUR MODEL BUILDING 14
2.6.1 Data analysis tools 14
2.6.2 Spatial analysis 14
2.6.3 24-hour average PM2.5 and NO2 concentration calculation 15
2.6.4 Independent variables 15
2.6.5 Model building and validation 17
2.6.6 The solution of outlier 17
2.7 EXPOSURE ASSIGNMENT 18
2.7.1 Method 1: LUR model 18
2.7.2 Method 2: LUR model + Indoor air monitoring 19
2.7.3 Method 3: Nearest station method 19
2.7.4 Lag effect 20
2.8 STATISTICS METHOD 20
CHAPTER 3 RESULTS 22
3.1 SUMMARY STATISTICS 22
3.1.1 Geographic predictors 22
3.1.2 Time-activity patterns 23
3.1.3 Regression indoor PM2.5 and NO2 concentrations 23
3.1.4 PM2.5 and NO2 concentrations 24
3.2 PM2.5 LAND USE REGRESSION MODEL IN METHOD 1 AND METHOD 2 26
3.3 NO2 LAND USE REGRESSION MODEL IN METHOD 1 AND METHOD 2 27
3.4 PM2.5 AND NO2 INDIVIDUALIZED EXPOSURE LEVELS IN DIFFERENT DESIGN OF EXPOSURE ASSESSMENT 28
3.5 GENERAL CHARACTERISTICS OF STUDY POPULATION AND THE CARDIOVASCULAR DISEASE MARKER 30
3.6 THE ASSOCIATION BETWEEN TRAFFIC-RELATED AIR POLLUTANT AND CARDIOVASCULAR MARKERS 31
3.6.1 The effects of cardiovascular endpoints with single-pollutant model 31
3.6.2 The effects of cardiovascular endpoints with two-pollutant model 33
CHAPTER 4 DISCUSSION 36
4.1 EXPOSURE ASSIGNMENTS 36
4.1.1 Cardiovascular marker with exposure to traffic-related air pollutants in different exposure assessment methods 36
4.1.2 Sensitivity analysis 37
4.1.3 Conclusion 38
4.2 THE ASSOCIATION BETWEEN PM2.5 AND NO2 AND CARDIOVASCULAR EFFECTS 38
4.2.1 Endothelial function - baPWV 39
4.2.2 Endothelial function - ABI 41
4.2.3 Vascular inflammations 43
4.2.4 Mechanisms explaining the association between air pollution and cardiovascular effects 45
CHAPTER 5 CONCLUSION 47
REFERENCE 49
APPENDIX 86
APPENDIX A TIME ACTIVITY QUESTIONNAIRE 86
APPENDIX B THE DESCRIPTION OF GEOGRAPHIC VARIABLES LAYER AND TYPE OF EUROPE AND TAIWAN LAND USE LABEL 89
APPENDIX C THE DEFINITION OF PREDICTOR VARIABLES INCLUDED IN LUR MODELS 90
APPENDIX D THE DEVELOPMENT OF MODEL BUILDING 91
APPENDIX E THE NUMBERS OF HEALTH EXAMINATIONS BY DATE 93
APPENDIX F SUMMARY STATISTICS OF PM2.5 AQMS GEOGRAPHIC PREDICTORS 94
APPENDIX G SUMMARY STATISTICS OF NO2 AQMS GEOGRAPHIC PREDICTORS 95
APPENDIX H SUMMARY STATISTICS OF SUBJECTS' ADDRESS GEOGRAPHIC PREDICTORS 96
APPENDIX I THE PREDICTOR VARIABLES AND R2 VALUE OF DAILY PM2.5 LUR MODEL IN HEALTH EXAMINATION SESSION 97
APPENDIX J THE PREDICTOR VARIABLES AND R2 VALUE OF DAILY NO2 LUR MODEL IN HEALTH EXAMINATION SESSION 100
APPENDIX K DESCRIPTIVE STATISTIC OF EXPOSURE ASSESSMENT 103
APPENDIX L INTERQUARTILE RANGE OF EXPOSURE ASSIGNMENTS AT DIFFERENT LAG-DAYS 104
APPENDIX M THE ASSOCIATION BETWEEN PM2.5 AND NO2 AT DIFFERENT-LAG-DAYS AND CARDIOVASCULAR ENDPOINT 105
APPENDIX N THE ASSOCIATION BETWEEN PM2.5 AND NO2 AT D DIFFERENT-LAG-DAYS AND CARDIOVASCULAR ENDPOINT WITH CONFOUNDER MODEL INCLUDED LDL 108

List of Tables
Table 1 A review table of health outcome of exposure to air pollutants predicted by short-term LUR models 56
Table 2 The regression model using for estimating the indoor air pollutant concentration of the day without sampling 57
Table 3 The correlation between PM2.5 and NO2 in different exposure assignments and lags 58
Table 4 The correlation between exposure assessment methods at different lag-days in air pollutant 59
Table 5 Descriptive statistics of health data 60
Table 6 A review table of the association between cardiovascular effects and traffic-related air pollutants 61

List of Figures
Figure 1 The flow chart of this study 64
Figure 2 The study area and location of all sampling monitoring station and subjects’ home 65
Figure 3 The timeline of air pollutants monitoring and health examination and the 66
Figure 4 The example of sample scheme 67
Figure 5 The flow chart of model development 67
Figure 6 Distribution of cardiovascular marker 68
Figure 7 The mean value of predictor variables in different buffer radii 69
Figure 8 The locations of subjects before they had health examination 72
Figure 9 The life custom when the subjects were at home 73
Figure 10 The indoor and outdoor concentrations of PM2.5 and NO2 74
Figure 11 The scatter plot between Grimm and Harvard Impactor 75
Figure 12 Counts of predictor variables in the final LUR models for PM2.5 76
Figure 13 R2 and validation R2 of PM2.5 LUR models in each day 77
Figure 14 Counts of predictor variables in the final LUR models for NO2 78
Figure 15 R2 and validation R2 of NO2 LUR models in each day 79
Figure 16 The process of excluding subjects 80
Figure 17 Descriptive statistic of exposure assessment 81
Figure 18 Percent changes in baPWV 83
Figure 19 Percent changes in baPWV 84
Figure 20 Percent changes in hsCRP for interquartile range changes 85
dc.language.isoen
dc.title以土地利用回歸模式評估細懸浮微粒與二氧化氮短期暴露量與心血管疾病相關性zh_TW
dc.titleAssessing the Association between
Cardiovascular Diseases and Short-Term
Exposure to Particulate Matter and Nitrogen Dioxide
with Land Use Regression Models
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇大成,陳主智
dc.subject.keyword土地利用模式,細懸浮微粒,二氧化氮,急性心血管效應,zh_TW
dc.subject.keywordLand use regression,Fine particle,Nitrogen dioxide,Acute cardiovascular effects,en
dc.relation.page107
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
6.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved