Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55915
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇
dc.contributor.authorChi-Shuan Shieen
dc.contributor.author謝其軒zh_TW
dc.date.accessioned2021-06-16T05:10:43Z-
dc.date.available2014-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citation[1] P. Drude (1900). 'Zur Elektronentheorie der metalle'
[2] Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, Phys. Rev. B 78, 201403(R) (2008)
[3] F. Stern, Phys. Rev. Lett. 18, 546 (1967).
[4] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).
[5] S. Das Sarma and E. H. Hwang, Phys. Rev. Lett 102, 206412 (2009).
[6] A. Nagashima, K. Nuka, H. Itoh, T. Ichinokawa, C. Oshima, S. Otani, and Y. Ishizawa, Solid State Commun. 83, 581 (1992).
[7] S. C. Liou, C. S. Shie, π-Plasmon Dispersion in Free-Standing Monolayer graphene Investigated by Momentum-Resolved Electron Energy-Loss Spectroscopy (unpublished)
[8] M. Born and J. R. Oppenheimer, Annalen der Physik 84, 457 (1927).
[9] L. H. Thomas, Proc. Cambridge Phil. Soc 23 (5) 542-548 (1927).
[10] E. Fermi, Rend. Accad. Naz.Lincei 6, 602-607 (1927).
[11] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[12] D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983); A. D. Becke, Phys. Rev. A 38, 3098 (1988); J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); 48, 4978(E) (1993).
[13] U. V. Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972); J. P. Perdew and A. Zunger, Phys. Rev. B, 23.5048 (1981).
[14] R. G. Parr, W. Yang (1994). Density-Functional Theory of Atoms and Molecules. Oxford: Oxford University Press
[15] Dirac, P. A. M. (1930). 'Note on exchange phenomena in the Thomas-Fermi atom'. Proc. Cambridge Phil. Roy. Soc. 26 (3): 376–385.
[16] F. Bloch Z. Physik, 57 549 (1929).
[17] D. M. Ceperley and B. J. Alder (1980). 'Ground State of the Electron Gas by a Stochastic Method'. Phys. Rev. Lett. 45 (7): 566–569.
[18] P. E. Blochl (1994). 'Projector augmented-wave method'. Phys. Rev. B 50 (24): 17953–17978.
[19] P. E. Blochl, C. J. Forst, and J. Schimpl, Bull. Mater. Sci. 26, 33
[20] J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 28,8 (1954)
[21] M. S. Hybertsen and S. G. Louie, Phys. Rev. B, 35 (11) 5585-5601.
[22] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[23] Several models for the dielectric matrix are evaluated in R.Car, E. Tosatti, S. Baroni, and S. Leelaprute, Phys. Rev. 824, 985 (1981)
[24] Wendel and R. M. Martin, Phys. Rev. B 19, 5251 (1979).
[25] P. Singhal and J. Callaway, Phys. Rev. B 14, 2347 (1976).
[26] A. R. Williams and U. von Barth, in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N. H. March (Plenum, New York, 1983), p. 189.
[27] S. L. Adler, Phys. Rev. 126, 413 (1962)
[28] R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (1986).
[29] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B 71, 035109 (2005.)
[30] S. R. Bahn and K. W. Jacobsen An object-oriented scripting interface to a legacy electronic structure code Comput. Sci. Eng., Vol. 4, 56-66, 2002
[31] E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 54, 14362 (1996)
[32] Jun Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces Phys. Rev. B 83, 245122 (2011)
[33] Y. X. Zhao and I. L. Spain, Phys. Rev. B 40, 993 (1989).
[34] J. P. Perdew, Yue Wang, PRB 45, 13244 (1992)
[35] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
[36] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Nat. Nanotechnol. 6, 630 (2011).
[37] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998); M. S. Dresselhaud, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996); M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002); V. W. Brar, Y. Zhang, Y. Yayon, T. Ohta, J. L. McChesney, A. Bostwick, E. Rotenberg, K. Horn, and M. F. Crommie, Appl. Phys. Lett. 91, 122102 (2007); S. B. Trickey, F. M‥uller-Plathe, G. H. F. Diercksen, and J. C. Boettger, Phys. Rev. B 45, 4460 (1992); J.-C. Charlier, X. Gonze, and J.-P. Michenaud, ibid. 43, 4579 (1991); V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).
[38] U. Buchner, phys. stat. sol. (b) 81, 227 (1977)
[39] H. Venghaus, phys. stat. sol. (b) 66, 145 (1974)
[40] A. G. Marinopoulos, L. Reining, A. Rubio, and V. Olevano, Phys. Rev. B 69, 245419 (2004)
[41] K.Watanabe, T. Taniguchi, and H. Kanda, Nat. Mat. 3, 404 (2004).
[42] V. L. Solozhenko, G. Will and F. Elf, Solid State Communications, Vol. 96, No. 1, pp. l-3, (1995).
[43] G. Y. Guo and J. C. Lin, Phys. Rev. B 71, 165402 (2005).
[44] K.Watanabe, T. Taniguchi, and H. Kanda, Nat. Mat. 3, 404 (2004).
[45] S. Galambosi, L. Wirtz, J. A. Soininen, J. Serrano, A. Marini, K. Watanabe, T. Taniguchi, S. Huotari,A. Rubio, and K. H‥am‥al‥ainen1, Phys. Rev. B 83,081413 (2011)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55915-
dc.description.abstract近代科學對於二維石墨烯的大量研究,起自於2004年Andre Geim 和Konstantin Novoselov 在曼徹斯特大學的實驗室中,成功用膠帶把二維石墨烯從石墨晶體中分離出來。由於石墨烯本身獨特的各種物理性質,全球的科學研究者都為之瘋迷,尤其是因為其線性的電導率,一般認為是在倒晶格中,費米面K對稱點上的狄拉克錐所造成。二維石墨烯是由是由蜂窩形狀碳元素所排列而成的二維晶體,碳原子上的電子主要是 軌域混成。透過對於電子能量散失能譜的研究,我們可以理解到,二維與三維石墨烯對於動量與能量的色散關係,以及對於電導性的影響。
類似的蜂巢型結構也可以在二維和三維的六方硼化氮中被發現。它們和六方石墨烯有類似的結構,但是在物理性質上卻有本質上的不同。其中石墨烯為導體,而硼化氮為半導體。在此我們也會討論二維六方硼化氮的電子能量散失能譜。
我利用時間相關密度泛函理論,來計算一系列不同的傳導動量所對應到的電子能量散失能譜。我也會對於倒空間中不同動量方向電子能量散失能譜,討論各向異性的現象。另一方面,我也會於二維和三維六方結構的材料中,討論不同特徵的電漿子激發。
zh_TW
dc.description.abstractThe recent studies in graphene have been prosperous since the first isolated graphene from graphite with a tap in 2004 by Andre Geim and Konstantin Novoselov in a laboratory at the University of Manchester. The special physical properties of graphene have been attractive to researches around the world, including the linearized conductivity, believed to be caused by Dirac cone at the K point in the reciprocal lattice. Fundamentally, graphene is just a two-dimensional honeycomb lattice composed of carbons, with four valence electrons of sp¬¬2 hybridized density distribution. Through a study of electronic energy loss spectrum of graphene and graphite, one can observe the different patterns of dispersion relation of momentum and frequency and further, conductivity.
A similar honeycomb structure may also be found in hexagonal boron nitride and the single boron nitride sheet. Hexagonal boron nitride is of a similar structure with graphite but with very different physical properties. Although graphite is a conductor, the graphitic boron nitride, also called hexagonal boron nitride, is a semi-conductor. The single boron nitride sheet is also an interesting structure for the electron energy-loss spectra study.
In this thesis, I calculated the electron energy-loss spectra with a sequence of different transferred momenta which are relatively small against the ones of incident electrons by applying time-dependent density-functional theory. Here I will discuss the anisotropy of plasmon excitations for momentum transferred in different directions; further, the different patterns of plasmon excitations in two- and three- dimension hexagonal structural materials.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:10:43Z (GMT). No. of bitstreams: 1
ntu-103-R01222050-1.pdf: 4335341 bytes, checksum: 4e7c996ac075d1c0d5d210a2959931b8 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
Chapter 1 Introduction 1
1.1 Overview of plasmon excitations 1
1.2 Thesis outline 2
Chapter 2 Theoretical Background and Computational Method 3
2.1 Density functional theory 3
2.1.1 Introduction 3
2.1.2 Thomas-Fermi theory 4
2.1.3 Hohenberg-Kohn theorem 6
2.1.4 Kohn-Sham equation 7
2.1.5 Exchange-correlation potentials 10
2.1.6 Projector-augmented wave method 11
2.2 Linear density response function 15
2.2.1 Introduction to linear response theory 15
2.2.2 Kubo formula for the dielectric function 16
2.2.3 The random phase approximation 21
2.2.4 The adiabatic local density approximation 24
2.2.5 Local-field corrections 28
2.2.6 Electron energy loss spectroscopy 28
2.3 Grid-based Projector-augmented Wave Code 31
2.3.1 Introduction 31
2.3.2 Linear density response function in projector-augmented method 31
Chapter 3 Plasmon Excitations in Graphite and Graphene 33
3.1 Fundamental properties of graphite and graphene 33
3.1.1 Introduction to graphite and graphene and computational details 33
3.1.2 Electronic structure properties and plasmon excitations 35
3.2 Electron energy-loss spectra of graphite 37
3.2.1 Dielectric functions 37
3.2.2 Electron energy-loss spectra 40
3.2.3 Dispersion relation 47
3.3 Electron energy-loss spectra of graphene 48
3.3.1 Electron energy-loss spectra 48
3.3.2 Dispersion relation 54
3.3.3 Discussion of plasmon excitation in graphite and graphene. 55
Chapter 4 Plasmon Excitations in Hexagonal Boron Nitride and The Single Boron Nitride sheet 57
4.1 Fundamental properties of hexagonal boron nitride and the single boron nitride sheet 57
4.1.1 Introduction to hexagonal boron nitride and computational details 57
4.1.2 Electronic structure properties and plasmon excitations 58
4.2 Electron energy-loss spectra of hexagonal boron nitride 60
4.2.1 Electron energy-loss spectra 60
4.2.2 Dispersion relation 66
4.3 Electron energy-loss spectra of the single boron nitride sheet 67
4.3.1 Electron energy-loss spectra 67
4.3.2 Dispersion relation 71
Chapter 5 Conclusion 73
REFERENCE 74
dc.language.isoen
dc.title以時間相關密度泛函理論研究二維和三維六方碳和硼化氮材料之電漿子激發zh_TW
dc.titlePlasmon Excitations in Two- and Three- Dimension Hexagonal Carbon and Boron Nitride Materials Studied by Time-dependent Density-functional Calculationsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁贊全,楊志開,薛宏中
dc.subject.keyword電漿子激發,密度泛涵理論,時間相關,zh_TW
dc.subject.keywordplasmon excitation,density functional theory,time-dependence,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved